Assignment 10 due on Tuesday, Jan 16, 2018

Name:

For $i, j \in \mathbb{N}$ and a partition $\lambda \vdash_i ij$ let $\{\lambda\}^{i \times j}$ denote the $(i \times j)$ -weight space in the irreducible GL_i -representation $\{\lambda\}$. For $\nu \vdash i$ we define the generalized plethysm coefficient $a_{\lambda}(\nu, j)$ via embedding $\mathfrak{S}_i \hookrightarrow \mathsf{GL}_i$ and decomposing:

$$\{\lambda\}^{i \times j} = \bigoplus_{\nu \vdash i} a_{\lambda}(\nu, j)[\nu].$$

Exercise 1 (5 points). Prove that

$$a_{\lambda}(\nu, 1) = \begin{cases} 1 & \text{if } \lambda = \nu, \\ 0 & \text{otherwise.} \end{cases}$$

Exercise 2 (10 points).

For $i, j \in \mathbb{N}$ the space $\bigotimes^{i} \operatorname{Sym}^{j} V$ has a canonical action of $\mathfrak{S}_{i} \times \operatorname{GL}(V)$. Prove that as an $(\mathfrak{S}_{i} \times \operatorname{GL}(V))$ -representation we have

$$\bigotimes^{i} \operatorname{Sym}^{j} V = \bigoplus_{\substack{\lambda \vdash i \\ \nu \vdash i}} a_{\lambda}(\nu, j) \ [\nu] \otimes \{\lambda\}.$$

Exercise 3 (10 points).

For partitions ν^1, \ldots, ν^m and $\lambda \vdash \sum_{i=1}^m |\nu^i|$ let $c_{\nu^1,\ldots,\nu^m}^{\lambda}$ denote the multiplicity of the irreducible $\mathsf{GL}(V)$ -representation $\{\lambda\}$ in the tensor product $\{\nu^1\} \otimes \cdots \otimes \{\nu^m\}$ of irreducible $\mathsf{GL}(V)$ -representations. This is called the multi-Littlewood-Richardson coefficient. If m = 2, then this is the classical Littlewood-Richardson coefficient. Prove that

$$c_{\nu^1,\dots,\nu^m}^{\lambda} = \sum_{\substack{\mu^1,\dots,\mu^{m-2}\\\mu^i \vdash \sum_{j=1}^{i+1} |\nu^j|}} c_{\nu^1,\nu^2}^{\mu^1} \cdot c_{\mu^1,\nu^3}^{\mu^2} \cdot c_{\mu^2,\nu^4}^{\lambda} \cdots c_{\mu^{m-2},\nu^m}^{\lambda}.$$

Exercise 4 (15 points).

Embed $\mathfrak{S}_i \times \mathfrak{S}_j \hookrightarrow \mathfrak{S}_{i+j}$ as a Young subgroup (i.e., \mathfrak{S}_i acts on $\{1, \ldots, i\}$ and \mathfrak{S}_j acts on $\{i+1, \ldots, i+j\}$). Use Schur-Weyl duality to prove that given a partition $\lambda \vdash i+j$ the irreducible \mathfrak{S}_{i+j} -representation $[\lambda]$ decomposes as an $\mathfrak{S}_i \times \mathfrak{S}_j$ -representation as follows:

$$[\lambda] = \bigoplus_{\substack{\mu \vdash i \\ \nu \vdash j}} c^{\lambda}_{\mu,\nu}([\mu] \otimes [\nu])$$