Assignment 11 due on Tuesday, Jan 23, 2018

Name:

Exercise 1 (5 + 5 + 5 points).

(Grenet's construction) Consider the following edge-weighted graph G_n : The nodes are all subsets of $\{1, \ldots, n\}$, but we identify \emptyset with $\{1, \ldots, n\}$, so G_n has $2^n - 1$ nodes. There is an edge from S to T with weight $X_{i,j}$ if |S| = i - 1 and $T = S \cup \{j\}$. The node \emptyset will have outgoing edges with weight $X_{1,j}$ to the node $\{j\}, 1 \leq j \leq n$ and incoming edges with weights $X_{n,j}$ from the node $\{1, \ldots, n\} \setminus \{j\}$. Furthermore, every node except \emptyset gets a self loop of weight 1.

- 1. Prove that the cycle covers of G_n stand in one-to-one correspondence with the permutations of \mathfrak{S}_n .
- 2. Prove that $per(G_n) = \pm \det(G_n)$.
- 3. Prove that $dc(per_n) \leq 2^n 1$.

Exercise 2 (5+5 points).

- 1. Prove that $dc(per_2) = 2$.
- 2. Prove that the per₂ \leq_p det₂ but per₂ \leq_p det₃.

Alper, Bogart and Velasco prove that $dc(per_3) = 7$. The exact value of $dc(per_4)$ is currently unknown to my best knowledge.

Exercise 3 (15 points).

The Hamilton cycle polynomial HC_n is defined like the permanent, but we do not sum over all permutations but only over permutations that are *n*-cycles. Prove that $\mathrm{dc}(\mathrm{HC}_n) \leq (n-1)2^{n-2}+1$. (It might be helpful to prove that there is a bijection between permutations in \mathfrak{S}_n and (n+1)-cycles in \mathfrak{S}_{n+1} .)