Assignment 2
due on Tuesday, November 7, 2017

Name: \square

For three partitions λ, μ, ν of d let $k(\lambda, \mu, \nu)$ denote the Kronecker coefficient, i.e., the dimension of the \mathfrak{S}_{d}-invariant space $\operatorname{dim}([\lambda] \otimes[\mu] \otimes[\nu])^{\mathfrak{S}_{d}}$.

Exercise 1 (10 points).
Determine $k((2,1),(2,1),(2,1))$.

Exercise 2 (10 points).
Let $\lambda \vdash d$. Let λ^{t} denote the transpose Young diagram of λ. Let $d \times 1$ denote the column partition. Prove that $k\left(d \times 1, \lambda, \lambda^{t}\right) \leq 1$.
20 bonus points if you also prove $k\left(d \times 1, \lambda, \lambda^{t}\right)=1$.

Exercise 3 (20 points).
Let λ, μ, ν be partitions of d and let $\tilde{\lambda}, \tilde{\mu}, \tilde{\nu}$ be partitions of \tilde{d}. Prove the "semigroup property": If $k(\lambda, \mu, \nu)>0$ and $k(\tilde{\lambda}, \tilde{\mu}, \tilde{\nu})>0$, then $k(\lambda+\tilde{\lambda}, \mu+\tilde{\mu}, \nu+\tilde{\nu}) \geq \max \{k(\lambda, \mu, \nu), k(\tilde{\lambda}, \tilde{\mu}, \tilde{\nu})\}$, where the addition of partitions is defined as adding row-lengths of the corresponding Young diagrams.
Hint: Look at the analogous proof for plethysm coefficients.

Exercise 4 (20 points).
Let (i) denote the partition that only has a single row. Let λ, μ, ν be partitions of d. As a preliminary task, prove that the sequence

$$
K_{i}:=k(\lambda+(i), \mu+(i), \mu+(i))
$$

is monotonously nondecreasing. Then prove that the sequence K_{i} stabilizes, i.e., $\exists i_{0} \forall i \geq i_{0}: K_{i}=K_{i_{0}}$.

