Assignment 3 due on Tuesday, November 14, 2017

Name:

As in the lecture, to each obstruction design \mathcal{H}_n we have the corresponding highest weight vector function $f_{\mathcal{H}_n}$.

Exercise 1 (10 points).

Consider two obstruction designs \mathcal{H}_1 and \mathcal{H}_2 . Take their union (the usual union of hypergraphs by just drawing them next to each other) and call the resulting obstruction design \mathcal{H}_3 . Prove that

$$f_{\mathcal{H}_3} = f_{\mathcal{H}_1} \cdot f_{\mathcal{H}_2}$$

as functions.

Exercise 2 (15 points).

Consider the following sequence of obstruction designs \mathcal{H}_n .

Prove that $f_{\mathcal{H}_n}$ is the zero function if n > 1 is odd.

Exercise 3 (15 points).

For odd n, find an obstruction design \mathcal{H}'_n of the same type as \mathcal{H}_n in the previous exercise, but with $f_{\mathcal{H}'_n} \neq 0$.