Assignment 5
due on Tuesday, Nov 28, 2017

Name: \square

Exercise 1 (15 points).
Let $A=M \otimes N^{*}, B=N \otimes L^{*}$, and $C=L \otimes M^{*}$ with $\operatorname{dim} M=m, \operatorname{dim} N=n$, and $\operatorname{dim} L=\ell$, that is, A can be viewed as the vector space of $m \times n$-matrices, etc. Let $\langle m, n, \ell\rangle \in A \otimes B \otimes C$ be the tensor of the multiplication of $m \times n$-matrices with $n \times \ell$-matrices. Prove that

$$
\langle m, n, \ell\rangle \cong \operatorname{Id}_{M} \otimes \operatorname{Id}_{N} \otimes \operatorname{Id}_{L}
$$

Exercise 2 (15 points).
Let V be an irreducible GL_{n}-representation. Prove that V is also irreducible as an $\mathrm{SL}_{n^{-}}$ representation, where $S L_{n}$ is the group of matrices with determinant equal to 1 .

Exercise 3 (10 points).
Let W be a vector space of dimension 2 and let $\ell, \ell_{1} \ldots, \ell_{n-1} \in W$ be pairwise distinct. Prove that there is a $g \in S^{n-1} W^{*}$ that vanishes on $\ell_{1}, \ldots, \ell_{n-1}$, but not on ℓ.

