Assignment 7
due on Tuesday, Dec 19, 2017

Name: \square

Let $T_{\mathrm{SL}_{n}}$ denote the group of diagonal matrices with determinant 1. Consider the group $G:=T_{\mathrm{SL}_{n}} \times T_{\mathrm{SL}_{n}}$, which acts on $\operatorname{Sym}^{n}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)$ and preserves both the determinant and the permanent. The group $\mathfrak{S}_{n} \times \mathfrak{S}_{n}$ acts on the space of G-invariants $V:=\left(\operatorname{Sym}^{n}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)\right)^{G}$ and we saw in the lecture that per $_{n}$ is the unique polynomial (up to scale) of type $((n),(n))$ in V, whereas det_{n} is the unique polynomial (up to scale) of type $\left(\left(1^{n}\right),\left(1^{n}\right)\right)$ in V.
In the following exercises, consider $W:=\left(\operatorname{Sym}^{2 n}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)\right)^{G}$. Analogously to V, there is a canonical action of $\mathfrak{S}_{n} \times \mathfrak{S}_{n}$ on W.

Exercise 1 (4 points).
Prove that in W there are nonzero polynomials of type $((n),(n))$.

Exercise 2 (4 points).
Let $n>1$ and prove that in W the polynomials of type $((n),(n))$ are not unique up to scale.

Exercise 3 (4 points).
Prove that in W there are nonzero polynomials of type $\left(\left(1^{n}\right),\left(1^{n}\right)\right)$.

Exercise 4 (12 points).
Let $n=3$ and prove that in W the polynomials of type $\left(\left(1^{3}\right),\left(1^{3}\right)\right)$ are not unique up to scale.

Exercise 5 (16 points).
Prove that for $n=6$ the space W contains a nonzero polynomial of type $\left((6),\left(1^{6}\right)\right)$.
You can use that the GL_{6}-representation $\operatorname{Sym}^{6}\left(\operatorname{Sym}^{2} \mathbb{C}^{6}\right)$ decomposes as
$\{(12)\}+\{(10,2)\}+\{(8,4)\}+\left\{\left(8,2^{2}\right)\right\}+\left\{\left(6^{2}\right)\right\}+\{(6,4,2)\}+\left\{\left(6,2^{3}\right)\right\}+\left\{\left(4^{3}\right)\right\}+\left\{\left(4^{2}, 2^{2}\right)\right\}+\left\{\left(4,2^{4}\right)\right\}+\left\{\left(2^{6}\right)\right\}$
and that the GL_{6}-representation $\bigwedge^{6}\left(\operatorname{Sym}^{2} \mathbb{C}^{6}\right)$ decomposes as

$$
\left\{\left(7,1^{5}\right)\right\}+\left\{\left(6,3,1^{3}\right)\right\}+\{(5,4,2,1)\}+\left\{\left(4^{3}\right)\right\}
$$

