Assignment 7 due on Tuesday, Dec 19, 2017

Name:

Let T_{SL_n} denote the group of diagonal matrices with determinant 1. Consider the group $G := T_{\mathsf{SL}_n} \times T_{\mathsf{SL}_n}$, which acts on $\operatorname{Sym}^n(\mathbb{C}^n \otimes \mathbb{C}^n)$ and preserves both the determinant and the permanent. The group $\mathfrak{S}_n \times \mathfrak{S}_n$ acts on the space of *G*-invariants $V := (\operatorname{Sym}^n(\mathbb{C}^n \otimes \mathbb{C}^n))^G$ and we saw in the lecture that per_n is the unique polynomial (up to scale) of type ((n), (n)) in V, whereas det_n is the unique polynomial (up to scale) of type $((1^n), (1^n))$ in V.

In the following exercises, consider $W := (\operatorname{Sym}^{2n}(\mathbb{C}^n \otimes \mathbb{C}^n))^G$. Analogously to V, there is a canonical action of $\mathfrak{S}_n \times \mathfrak{S}_n$ on W.

Exercise 1 (4 points). Prove that in W there are nonzero polynomials of type ((n), (n)).

Exercise 2 (4 points). Let n > 1 and prove that in W the polynomials of type ((n), (n)) are not unique up to scale.

Exercise 3 (4 points). Prove that in W there are nonzero polynomials of type $((1^n), (1^n))$.

Exercise 4 (12 points).

Let n = 3 and prove that in W the polynomials of type $((1^3), (1^3))$ are not unique up to scale.

Exercise 5 (16 points). Prove that for n = 6 the space W contains a nonzero polynomial of type ((6), (1⁶)). You can use that the GL_6 -representation $\operatorname{Sym}^6(\operatorname{Sym}^2 \mathbb{C}^6)$ decomposes as

 $\{(12)\} + \{(10,2)\} + \{(8,4)\} + \{(8,2^2)\} + \{(6^2)\} + \{(6,4,2)\} + \{(6,2^3)\} + \{(4^3)\} + \{(4^2,2^2)\} + \{(4,2^4)\} + \{(2^6)\} + \{($

and that the GL_6 -representation $\bigwedge^6(\operatorname{Sym}^2\mathbb{C}^6)$ decomposes as

 $\{(7,1^5)\} + \{(6,3,1^3)\} + \{(5,4,2,1)\} + \{(4^3)\}.$