Assignment 8, Christmas break sheet
due on Tuesday, Jan 2, 2018

Name: \square

Exercise 1 (10 points).
Prove that every complex matrix of finite order is diagonalizable.

Exercise 2 (10 points).
Fix a natural number n. Given a list $\left(c_{1}, c_{2}, \ldots, c_{\ell}\right) \in\{1, \ldots, n\}^{\ell}$ of pairwise distinct numbers, the corresponding cycle is the permutation π that satisfies $\pi\left(c_{i}\right)=c_{i+1}$ for all $1 \leq i \leq \ell-1$, $\pi\left(c_{\ell}\right)=c_{1}$, and $\pi(j)=j$ if $\forall i: j \neq c_{i}$. The number ℓ is called the length of the cycle and the set $\left\{c_{1}, \ldots, c_{\ell}\right\}$ is called its support. Two cycles are called disjoint if their supports have empty intersection. Clearly disjoint cycles commute. Prove that every $\pi \in \mathfrak{S}_{n}$ can be written uniquely (up to a permutation of the factors) as a product of disjoint cycles.
This is called the cycle decomposition.

Exercise 3 (10 points).
Let $\pi=c^{(1)} c^{(2)} \cdots c^{(k)} \in \mathfrak{S}_{n}$ be the cycle decomposition. Let ℓ_{i} denote the length of the cycle $c^{(i)}$. If we sort the list of lengths $\left(\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right)$, then we obtain a partition $\lambda \vdash n$ that we call the cycle type of π. Prove that two permutations are in the same conjugacy class iff they have the same cycle type.

Exercise 4 (10 points).
Let G be a finite group and let V and W be two G-representations (in particular, V and W are finite dimensional). Then the direct sum $V \oplus W$ of vector spaces is a G-representation via

$$
g(v, w):=(g v, g w) .
$$

Prove that the character $\chi_{V \oplus W}$ satisfies $\chi_{V \oplus W}(g)=\chi_{V}(g)+\chi_{W}(g)$.

