Assignment 9
due on Tuesday, Jan 9, 2018

Name: \square

Exercise 1 (10 points).
Let G be a finite group and let V and W be two G-representations (in particular, V and W are finite dimensional). Then the tensor product $V \otimes W$ of vector spaces is a G-representation via

$$
g(v \otimes w):=g v \otimes g w
$$

and linear continuation. Prove that the character $\chi_{V \otimes W}$ satisfies $\chi_{V \otimes W}(g)=\chi_{V}(g) \cdot \chi_{W}(g)$.

Exercise 2 (10 points).
The tensor product of Specht modules $[(2,1)] \otimes[(2,1)]$ is a 4 -dimensional \mathfrak{S}_{3}-representation. Compute its character and decompose it as a linear combination of characters of irreducible \mathfrak{S}_{3}-representations.

Exercise 3 (10 points).
The tensor power of Specht modules $W:=[(2,1)]^{\otimes n}$ is a 2^{n}-dimensional \mathfrak{S}_{3}-representation via

$$
g\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{n}
$$

and linear continuation. Determine the multiplicities of the irreducible \mathfrak{S}_{3}-representations in W.

Exercise 4 (10 points).
Let $H \leq G$ be a subgroup of a (not necessarily finite) group. For each $g \in G$ we define the coset as its orbit under the right multiplication:

$$
g H:=\{g h \mid h \in H\} .
$$

Prove that distinct cosets have empty intersection. Also prove that all cosets have the same cardinality.

