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Chapter 1

Strassen’s equation

1.1 Flattenings
Let A, B, and C be vector spaces over some field F of dimensions ā, b̄, and c̄. Let T ∈ A⊗B ⊗C.
Recall that R(T ) ≤ r if there are ai ∈ A, bi ∈ B, and ci ∈ C, 1 ≤ i ≤ r such that

T =
r∑
i=1

ai ⊗ bi ⊗ ci. (1.1.1)

Since Hom(B∗, A⊗C) ∼= (B∗)∗⊗A⊗C ∼= A⊗B⊗C, we can view T as a linear map B∗ → A⊗B.
The “usual” matrix rank rk(T ) (with respect to this splitting of the spaces) is the minimum number
s such that there are bi ∈ B and xi ∈ A⊗ C such that

T =
s∑
i=1

ai ⊗ xi (1.1.2)

By writing ai ⊗ ci in (1.1.1) as xi, we see that

R(T ) ≥ rk(T )

and, since the matrix rank is lower semi-continuous,

R(T ) ≥ rk(T ).

The process is called flattening.

1.2 Strassen’s equation
We now augment T : B∗ → A ⊗ C to a mapping TA = IdA⊗T which is a mapping A ⊗ B∗ →
A ⊗ A ⊗ C. Recall that A = Λ2A ⊕ S2A. The mapping T∧A : A ⊗ B∗ → Λ2A ⊗ C is obtained by
concatenating TA with the natural projection of A⊗A→ Λ2A.

Now assume that dimA = ā = 3 and choose a basis a1, a2, a3. Write

T = a1 ⊗X1 + a2 ⊗X2 + a3 ⊗X3
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with Xj : B∗ → C being a c̄× b̄-matrix. TA maps aj ⊗β to aj ⊗ (a1⊗X1β+a2⊗X2β+a3⊗Xβ).
TA looks like

TA =



X1
X2
X3

X1
X2
X3

X1
X2
X3


The matrix has a block structure, each block has size c̄× b̄. The three block columns correspond
to bases of the form a1 ⊗ cj , a2 ⊗ cj , and a3 ⊗ cj , respectively. The nine block rows correspond to
bases a1 ⊗ a1 ⊗ βj , a1 ⊗ a2 ⊗ βj , a1 ⊗ a3 ⊗ βj , a2 ⊗ a1 ⊗ βj , . . . , a3 ⊗ a3 ⊗ βj , respectively.

The projection A⊗A→ Λ2A maps ai⊗aj → ai ∧aj = 1
2 (ai⊗aj −aj ⊗ai), that is, we identify

ai ⊗ aj with −aj ⊗ ai. Therefore, T∧A looks like

T∧A =

 X2 −X1
X3 −X1

X3 −X2

 .

Here, the three block rows correspond to the bases a1 ∧ a2 ⊗ βj , a1 ∧ a3 ⊗ βj , and a2 ∧ a3 ⊗ βj ,
respectively.

1.2.1 Exercise. Prove that

det
(
X Y
Z W

)
= det(W ) · det(X − YW−1Z),

if W is invertible. (X,Y, Z,W are matrices of matching sizes.)

Now assume that B = C and that X1 is invertible. By performing a base change, we can
assume that X1 = Id, this does not change rk(T∧A ). After some row operations, we get that

T∧A =

 X3 −X2
X2 Id
X3 Id

 .

T∧A has full rank iff det(T∧A ) 6= 0. By Exercise 1.2.1,

det(T∧A ) = det
(
X3 −X2

)( X2
X3

)
= det(X3X2 −X2X3).

1.2.2 Proposition (Strassen [Str83]). Let T ∈ F3 ⊗ Fb̄ ⊗ Fb̄ be given by slices (Id, X, Y ). If
rk(XY − Y X) = b̄, then R(T ) ≥ 3

2 b̄.

1.2.3 Exercise. Generalize this to: R(T ) ≥ b̄+ 1
2 rk(XY − Y X) (when rk(XY − Y X) < b̄).

Proof. By flattening, we have
rk(T∧A ) ≤ R(T∧A ).

We have rk(T∧A ) = 3b̄, since
det(T∧A ) = det(XY − Y X) 6= 0.



CHAPTER 1. STRASSEN’S EQUATION 4

Let Tε =
∑r
i=1 aε,i ⊗ bε,i ⊗ cε,i such that Tε → T . Let r be minimal such that such a sequence Tε

exists, that is, r = R(T ). We have

(Tε)∧A =
r∑
i=1

(aε,i ⊗ bε,i ⊗ cε,i)∧A,

since the transformation is linear. By Lemma 1.2.4 below (recall that ā = 3) and the subadditivity
of rank, we have

rk((Tε)∧A) ≤ 2r.

Since rk is lower semi-continuous,

rk((Tε)∧A) ≥ rk(T∧A ) = 3b̄.

Hence 3b̄ ≤ 2r = 2R(T ) and the claim follows.

1.2.4 Lemma. rk((a⊗ b⊗ c)∧A) ≤ ā− 1.

Proof. Let a = a1, a2, . . . , aā be a basis of A.

a⊗ b⊗ c : B∗ → A⊗ C

maps
β 7→ β(b) · a⊗ c.

Furthermore,
(a⊗ b⊗ c)A : A⊗B∗ → A⊗A⊗ C

maps
ai ⊗ β 7→ β(b) · ai ⊗ a⊗ c,

and finally,
(a⊗ b⊗ c)∧A : A⊗B∗ → Λ2A⊗ C

maps
ai ⊗ β 7→ β(b) · (ai ∧ a)⊗ c.

Since a1 = a, we have a1 ∧ a = 0 and the image of (a⊗ b⊗ c)∧A is at most (ā− 1)-dimensional (and
in fact, the dimension equals ā− 1).

1.3 The slices of the matrix multiplication tensor
Let Ei,j be the matrix that has a 1 in position (i, j) and 0’s elsewhere. The matrix multiplication
map maps

(Ei,j , Ej̄,k) 7→ Ei,jEj̄,k =
{
Ei,k if j = j̄,
0 otherwise.

If we order the first basis as E1,1, . . . , E1,n, E2,1, . . . and the second as E1,1, . . . , En,1, E2,1, . . . , then
the 3-slices of the matrix multiplication tensor corresponding to Ei,k is of the form Ei,k⊗Idn, since
exactly n pairs of matrices contribute to this slice, namely the one above for j = j̄.
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1.4 Lower bound for the border rank of matrix multiplica-
tion

Let t ∈ A⊗B⊗C be a tensor and let E : A→ A′, F : B → B′, and G : C → C ′ be endomorphisms.
Recall that (A ⊗ B ⊗ C)t is defined on decomposable elements by (E ⊗ F ⊗ G)(a ⊗ b ⊗ c) =
E(a)⊗ F (b)⊗G(c) and then extended to arbitrary elements by linearity. Furthermore, we have

R((E ⊗ F ⊗G)t) ≤ R(t)

and the same is true for border rank.
Strassen’s lower bound is for tensors with three slices. To apply it to the matrix multiplication

tensor 〈n, n, n〉, we will define a projection π : Fn×n → S, where S is subspace of dimension three,
and then apply the lower bound to (Id⊗ Id⊗π)〈n, n, n〉.

Let

P =


0 1 . . . 0

0 . . . . . . ...
... . . . . . . 1
1 0 . . . 0

 ,

be the permutation matrix that corresponds to the cyclic shift and let

L


λ1 0 . . . 0

0 λ2
. . . ...

... . . . . . . 0
0 . . . 0 λn

 ,

be a diagonal matrix with pairwise distinct entries on the main diagonal.
It is easy to see that

LP − PL =


0 λ1 − λ2 . . . 0

0 . . . . . . ...
... . . . . . . λn−1 − λn

λn − λ1 0 . . . 0

 ,

therefore LP − PL has full rank, since the λi are pairwise distinct.
As the three slices of the matrix multiplication tensor, we choose Idn⊗ Idn, L⊗Idn, and P⊗Idn.

Note that
(L⊗ Idn)(P ⊗ Idn)− (P ⊗ Idn)(L⊗ Idn) = (LP − PL)⊗ Idn

has full rank. Let π be any projection from Fn2×n2 onto 〈Idn⊗ Idn, L ⊗ Idn, P ⊗ Idn〉. Then we
have

R(〈n, n, n〉) ≥ R((Id⊗ Id⊗π)〈n, n, n〉)
= R(Idn⊗ Idn, L⊗ Idn, P ⊗ Idn)

≥ 3
2n

2

where the last inequality follows from Proposition 1.2.2.



Chapter 2

Lower bounds for rank

Strassen’s lower bound is of the following form: We apply some projection π to the tensor in such
a way, that a certain polynomial does not vanish on the slices of the resulting tensor. Note that
for π, we only defined the image. There is a second degree of freedom, namely, choosing its kernel.
By choosing the kernel properly, we can get improved bounds for the rank.

2.1 A technical lemma
2.1.1 Lemma. Let p ∈ F[X1,1, X1,2, . . . , Xn,n] be a nonzero polynomial of degree d over an infinite
field F. Let A1, . . . , AN be a basis of Fn×n, N = n2. Then there are indices i1, . . . , id such that
〈Ai1 , . . . , Aid〉 contains a matrix B such that p(B) 6= 0.

Proof. Consider the polynomial q(α1, . . . , αN ) := p(α1A1 + · · · + αNAN ). q is nonzero, since p is
nonzero: Let C ∈ Fn×n such that p(C) 6= 0 and let C = γ1A1 + · · ·+ γNAN . Then

q(γ1, . . . , γN ) = p(C) 6= 0.

Furthermore, q is of degree d in α1, . . . , αN . Choose i1, . . . , id′ , d′ ≤ d such that αi1 · · ·αid′
appears as a monomial in q. (The indices need not be pairwise distinct. Set all other αj to
zero. Let q̂(αi1 , . . . , αid′ ) be the resulting polynomial. q̂ is nonzero, since it contains the monomial
αi1 · · ·αid′ (with some nonzero coefficient). Therefore, we can find an assignment to βi1 , . . . , βid′
such that q̂(βi1 , . . . , βid′ ) 6= 0. B := βi1Ai1 + · · ·+ βid′Aid′ is the matrix we are looking for.

2.2 Substitution method
2.2.1 Lemma (Substitution method). Let t ∈ A⊗B ⊗ C be a tensor and let

t =
r∑
i=1

ai ⊗ bi ⊗ ci

be an optimal decomposition into rank-one tensors. (“Optimal” here means r = R(t).) Let π :
C → C be a projection. Then

R(t) ≥ R((Id⊗ Id⊗π)t) + #{i | ci ∈ kerπ}.

Proof. By definition,

(Id⊗ Id⊗π)t =
r∑
i=1

ai ⊗ bi ⊗ π(ci).
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(This is well-defined.) Permute the summands in such a way that c1, . . . , cr′ /∈ kerπ and
cr′+1, . . . , cr ∈ kerπ. Then

(Id⊗ Id⊗π)t =
r′∑
i=1

ai ⊗ bi ⊗ π(ci).

Therefore,

R((Id⊗ Id⊗π)t) ≤ r′

= r −#{i | ci ∈ kerπ}
= R(t)− {i | ci ∈ kerπ},

and the assertion of the lemma follows.

2.3 Lower bounds for matrix multiplication
Let

〈n, n, n〉 =
r∑
i=1

ai ⊗ bi ⊗ ci.

We claim that c1, . . . , cr are linearly independent. Otherwise, there would be a nonzero linear map
E : Fn×n → Fn×n, such that

E(ci) = 0

for all 1 ≤ i ≤ r. Therefore
〈(Id⊗ Id⊗E)〈n, n, n〉 = 0.

But this means that there is a linear dependence among the 3-slices of 〈n, n, n〉, a contradiction,
since we know that the 3-slices are Ei,j ⊗ Id, 1 ≤ i, j,≤ n.1 Therefore, we can assume w.l.o.g. that
c1, . . . , cN are a basis of Fn×n, N = n2. Let c∗1, . . . , c∗N denote a dual basis of c1, . . . , cN . Then

(Id⊗ Id⊗c∗i )t, 1 ≤ i ≤ N

span the space of 3-slices of t. In particular, every (Id⊗ Id⊗c∗i )t is of the form si ⊗ Id for some
si ∈ Fn×n and s1, . . . , sN form a basis of Fn×n.

We have

det(X1s1 ⊗ Id + · · ·+XNsN ⊗ Id) = (det(X1s1 + · · ·+XNsn))n.

The determinant on the lefthand side is nonzero iff the determinant on the righthand side is. The
determinant on the righthand side has degree n and since s1, . . . , sN form a basis, there are values
ξ1, . . . , ξN such that ξ1s1+· · ·+ξNsN = Id. By Lemma 2.1.1, there are indices i1, . . . , in and scalars
α1, . . . , αn such that det(α1si1 + · · · + αnsin) 6= 0. Let f = α1si1 + · · · + αnsin and F = f ⊗ Id.
By replacing t := 〈n, n, n〉 by (F−1 ⊗ Id⊗ Id)t, we can assume that f = Id. Above, F−1 becomes
an endomorphism of FN×N by left multiplication with F−1. Since F is invertible, this does not
change the rank of t. Note that F−1 = f−1 ⊗ Id, therefore, after the transformation, the 3-slices
still form a basis of the space Fn×n⊗ Id. To simplify notations, we call the new tensor again t and
the slices si ⊗ Id, 1 ≤ i ≤ N . We now have that Id ∈ 〈si1 , . . . , sin〉.

Next, consider

det[X1s1⊗Id + · · ·+XNsN⊗Id, Y1s1⊗Id + · · ·+YNsN⊗Id] = (det[X1s1+· · ·+XNsN , Y1s1+· · ·+Ynsn])n.
1Tensors with linearly independent 3-slices are also called 3-concise.
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The determinant on the righthand side is a polynomial of degree 2n, it is nonzero, since we can
instantiate the variables such that we get the matrices L and P from the preceeding chapter.
Note that every monomial of the determinant has degree n in the X-variables and degree n in
the Y -variables as well. It is very easy to extend Lemma 2.1.1 to this situation and prove that
there indices j1, . . . , jn and k1, . . . , kn such that there are matrices ` ∈ 〈sj1 , . . . , sjn

〉 and p ∈
〈sk1 , . . . , skn〉 such that det[`, p] 6= 0. Now let C : Fn×n → Fn×n be the projection along 〈si | i /∈
{i1, . . . , in, j1, . . . , jn, k1, . . . , kn}〉 onto 〈si1 , . . . , sin , sj1 , . . . , sjn , sk1 , . . . , skn〉.

Now
(Id⊗ Id⊗C)〈n, n, n〉 =

r∑
i=1

ai ⊗ bi ⊗ C(ci).

There are N − 3n of the ci in the kernel of C, therefore,

R(〈n, n, n〉) ≥ R((Id⊗ Id⊗C)t) +N − 3n. (2.3.1)

Furthermore Id⊗ Id, `⊗ Id, p⊗ Id are in span of the slices of (Id⊗ Id⊗C)t, by the definition of C.
By Strassen’s equation,

R((Id⊗ Id⊗C)t) ≥ 3
2N.

(In fact, this lower bound even holds for the border rank, but we cannot make use out of this,
since (2.3.1) only holds for the rank. To apply Strassen’s equation, we formally have to project
the third component onto our three slices Id⊗ Id, ` ⊗ Id, p ⊗ Id.) Plugging the last equation into
the first, we obtain:

2.3.2 Theorem ([Blä00]).
R(〈n, n, n〉) ≥ 5

2n
2 − 3n
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Landsberg–Ottaviani equations

Now, we take our tensor T : B∗ → A ⊗ C and tensor it this time with IdΛpA for some p ≤ n − 1
and then project ΛpA⊗A→ Λp+1A. We obtain a map

T∧
p

A : ΛpA⊗B∗ → Λp+1A⊗ C.

Like before, we want to bound R(T ) in terms of rk T∧p

A .
We start with a generalisation of Lemma 1.2.4:

3.0.1 Lemma. rk((a⊗ b⊗ c)∧p

A ) ≤
(
ā−1
p

)
.

Proof. Let a = a1, . . . , aā be a basis of A. (a⊗ b⊗ c)∧p

A sends

ai1 ∧ · · · ∧ aip ⊗ β 7→ β(b)ai1 ∧ · · · ∧ aip ∧ a⊗ c

ai1 ∧ · · · ∧ aip ∧ a is 0 iff there is a j such that ij = 1. Thus the image of has dimension at most(
ā−1
p

)
(and is in fact equal to

(
ā−1
p

)
).

3.0.2 Lemma. R(T ) ≥ rk(T∧
p

A )
(ā−1

p ) .

Proof. Let r = R(T ). Let Tε be a sequence of tensors such that Tε → T and R(Tε) = r. Write

Tε =
r∑
i=1

ai,ε ⊗ bi,ε ⊗ ci,ε.

Then
(Tε)∧

p

A =
r∑
i=1

(ai,ε ⊗ bi,ε ⊗ ci,ε)∧
p

A .

Thus rk((Tε)∧
p

A ) ≤ r
(
ā−1
p

)
. Since rk is lower semicontinuous, we get

rk(T∧
p

A ) ≤ r
(
ā− 1
p

)
.

Now the claim follows, as r = R(T ).

Now assume that ā = 2p + 1. If this is not the case, then we can restrict to some subspace of
A. Write

T = a0 ⊗X0 + · · ·+ a2p ⊗X2p

9
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with Xi : B∗ → C and a0, . . . , a2p being a basis. T∧p

A : ΛpA⊗B∗ → Λp+1A⊗ C maps

ai1 ∧ · · · ∧ aip ⊗ β 7→
2p∑
j=0

ai1 ∧ · · · ∧ aip ∧ aj ⊗Xj(β). (3.0.3)

We now define two bases for ΛpA and Λp+1A. For I ⊆ {0, . . . , 2p}, set aI =
∧
i∈I ai.

ΛpA: aI with |I| = p,
first all I with 0 ∈ I,

( 2p
p−1
)

many
then all other,

(2p
p

)
many

Λp+1A: aI with |I| = p+ 1,
first all I with 0 /∈ I,

( 2p
p+1
)

=
( 2p
p−1
)

many
then all other,

(2p
p

)
Every basis consists of two blocks. The second block of the first basis consists of aI with |I| = p

and 0 /∈ I. The second block of the second basis consists of AJ with |J | = p + 1 and 0 ∈ J . We
can write J = {0} ∪ I with 0 /∈ I and |I| = p. So both blocks are indexed by sets I and we want
that both blocks have the same order with respect to I. Now we write the matrix of (3.0.3) with
respect to the chosen bases:

0 . . . 0 ±Xsp

...
... . . .

... . . .
0 . . . 0 ±Xs1

±Xsp
−X0

. . .
... . . .

. . .
±Xs1 −X0
±Xs0 −X0


The first block column corresponds to elements ai1 ∧ · · · ∧ aip ⊗ β with i1 = 0, the second block
columns to elements with i1 > 0. In each column we record the coefficients of the image of such
an element under the map (3.0.3). The first block row corresponds to ai1 ∧ · · · ∧ aip+1 ⊗ c with
i1 > 0 and the second block row corresponds to i1 = 0. The two columns with the ±Xsj entries
exemplify the image of ai1 ∧· · ·∧aip⊗β under (3.0.3).1 Note that in the sum on the righthand side
of (3.0.3), only p+ 1 summands are nonzero. The column on the lefthand side is the case i1 = 0.
Then all nonzero coefficients in the matrix are in the lower block row, since every summand on
the righthand side of (3.0.3) contains the index 0. We have sj /∈ {i1, i2, . . . , ip}. The column on
the righthand side is the case i1 > 0. One summand that we get is −a0 ∧ ai1 ∧ · · · ∧ aip ⊗X0 and
this produces the −X0 in the lower right block. Every other summand does not contain 0 and
therefore, the coefficients appear in the upper block row. Write the matrix above as(

0 Q
Q̃ R

)
.

By an appropriate change of bases, we can achieve that X0 = − Id and henceforth, R = Id. (The
identity matrices have different sizes.) Therefore,

det
(

0 Q
Q̃ Id

)
= det(QQ̃)

1Strictly speaking, β runs over some basis, since each Xi is itself a matrix.
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What are the block2 entries of Q and Q̃. Columns of Q correspond to elements aJ′ = aj′1 ∧· · ·∧aj′p
with j′1 > 0. Rows correspond to elements aJ = aj1 ∧ · · · ∧ajp+1 with j1 > 0. The block entry qJ,J ′
is nonzero, if J is by one element larger thant J ′, that is,

qJ,J ′ =
{
±Xk if J ′ ∪ {k} = J

0 otherwise

In the same way, columns of Q̃ correspond to elements a0 ∧ ai2 ∧ · · · ∧ aip and rows to elements
a0 ∧ ai′2 ∧ · · · ∧ ai′p+1

. Let I = {i2, . . . , ip} and I ′ = {i′2, . . . , i′p=1}. We remove the 0 from the index
sets to get a nicer condition of the mJ,I below. We have

q̃I′,I =
{
±X` if I ∪ {`} = I ′

0 otherwise

For the entries of QQ̃ = (mJ,I) we have

mJ,I =
{
±(XkX` −X`Xk) if I ∪ {k, `} = J

0 otherwise

See [MR12] for some explicit examples of the matrix QQ̃.

3.1 Matrix multiplication
Now we consider the case of matrix multiplication 〈n, n, n〉 : Fn×n × Fn×n → Fn×n. We choose
p = n− 1 and will define a subspace A ⊆ Fn×n of dimension 2p+ 1 = 2n− 1. A = 〈a0, . . . , a2n−2〉
will be the space of Hankel matrices,

ak =
∑

i+j=k+2
ei,j , 0 ≤ k ≤ 2n− 2

where ei,j is the matrix that has a 1 in position (i, j) and 0s elsewhere. Note that

ak : ej 7→ ek+2−j , 1 ≤ j ≤ k + 1

for all 0 ≤ k ≤ n− 1 and

ak : ej 7→ ek+2−j , n+ 2− k ≤ j ≤ n

for all n ≤ k ≤ 2n− 2. Here ei is the ith unit vector.
We consider the restriction of 〈n, n, n〉 to A ⊗ Fn×n and T denotes the flattening (Fn×n)∗ →

A⊗ Fn×n. The slices of 〈n, n, n〉 corresponding to ai are Xi = ai ⊗ Idn. (This was proven in GCT
1.) We can write T = a0⊗X0 + . . . a2n−2⊗X2n−2. We want to prove that T∧n−1

A has full rank. It
is enough to prove that t∧n−1

A has full rank, where t = a0 ⊗ x0 + · · ·+ a2n−2 ⊗ x2n−2 and xi = ai.
We prefer to write xi instead of ai to distinguish between the different spaces.

3.1.1 Lemma. The map t∧n−1

A is injective.

Proof. We follow the proof given in [Lan17]. t∧n−1

A maps

aS ⊗ ej 7→
∑
j /∈S

aS ∧ aj ⊗ xj(ej),

2Block now refers to the division induced by the Xi, not the two blocks induced by the structure of the bases.
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where S ⊆ {0, . . . , 2n− 2}, |S| = n− 1 and aS =
∧
i∈S ai. We will prove by induction that every

aP ⊗ ei is in the image of T∧n−1

A , where P ⊆ {0, . . . , 2n− 2}, |P | = n, and i ∈ {1, . . . , n}. For the
induction, we will define a partial ordering among the aP ⊗ ei. We have

aP ⊗ ei < aQ ⊗ ej

if for ` = min{i, j}, the ` smallest elements of Q are smaller or equal to the ` smallest elements of
P and one of them is strictly smaller, or these ` elements are the same and i < j.

The minimal element in this ordering is a{n−1,...,2n−2} ⊗ e1. We have

t∧
n−1

A (a{n,...,2n−2} ⊗ en) = a{n−1,...,2n−2} ⊗ e1,

since xj(en) = 0 for j < n− 1. This is the induction base.
Now consider some aQ ⊗ ej and assume that all aP ⊗ ei with aP ⊗ ei < aQ ⊗ ej are already

in the image. Let Q = {q1, . . . , qn} with qν < qν+1 for all ν. Let Q′ = Q \ {qj} and consider the
image of aQ′ ⊗ e2+qj−j . (Note that 1 ≤ 2 + qj − j ≤ n.) The image is∑

i/∈Q′
aQ′ ∧ ai ⊗ xi(e1+qj−j).

If we consider i = qj , then we see that aQ⊗ej is in the sum, since xqj (e2+qj−j) = eqj+2−2−qj+j = ej .
If i < qj , then the summand is aQ′∪{i}⊗ei+j−qj . Since i+j−qj < j and the first j−1 elements

of Q′ and Q are the same, we have that aQ′∪{i} ⊗ ei+j−qj
< aQ ⊗ ej .

If i > qj , then the summand is aQ′∪{i} ⊗ ei+j−qj
. Now i + j − qj > j and the first j elements

of Q′ ∪ {i} are larger than the first j elements of Q. Therefore, aQ′∪{i}⊗ ei+j−qj
< aQ⊗ ej in this

case, too.
Since all other elements in the sum are smaller than aQ⊗ ej , they are in the image of t∧n−1

A by
the induction hypothesis. Therefore, aQ ⊗ ej is also in the image.

3.1.2 Theorem (Landsberg & Ottaviani [LO11]). R(〈n, n, n〉) ≥ 2n2 − n.

Proof. By Lemma 3.1.1, rk(T∧n−1

A ) ≥
(2n−1
n−1

)
n2, where A is as chosen in the lemma. Therefore, by

Lemma 3.0.2,

R(〈n, n, n〉) ≥
(2n−1
n−1

)(2n−2
n−1

)n2 = 2n− 1
n

n2.

3.2 Extension to rank
In a similar way as above, we can prove that for p ≤ n− 1, T∧p

A is injective for some appropriate
space A of dimension 2p+ 1. The lower bound that you get in this case is

R(〈n, n, n〉) ≥
(2p+1

p

)(2p
p

) n2 = (2− 1
p+ 1)n2.

When p = ω(1), then the righthand side is 2n2 − o(n2).
Now the idea is to choose p quite small, say log logn and combine the bound for the border rank

with the substitution method. T∧p

A is injective if det(QQ̃) is nonzero. det(QQ̃) is a polynomial of
degree

( 2p
p−1
)
n2. However, Q can be written as q ⊗ Idn and Q̃ as q̃ ⊗ Idn. Therefore, det(QQ̃) is

the nth power of a polynomial of degree
( 2p
p−1
)
n. We know that the polynomial is nonzero by the

particular construction of A mentioned above.
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If we now take any basis of Fn×n, we know that there are
( 2p
p−1
)
n elements among them such

that the corresponding polynomial that we get from det(QQ̃) by replacing the concrete choices by
generic combinations of the chosen elements is nonzero. Since

( 2p
p−1
)

= o(n2), we get the followng
theorem.

3.2.1 Theorem (Landsberg [Lan14]). R(〈n, n, n〉) ≥ 3n2 − o(n2).



Bibliography
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