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Exercise 1 (10 Points). Let Kn denote the continuant, which is the (1, 1)-entry of the product

(
x1 1
1 0

)(
x2 1
1 0

)
. . .

(
xn 1
1 0

)
What is the coefficient of the monomial xi1 · xi2 · . . . · xi` in Kn ?

Solution 1. For this, we can look at the ABP computing Kn. By looking at this ABP, we note
that if a monomial xi1xi2 . . . xi` appears in Kn and a variable xk is not present in xi1xi2 . . . xi`

then at least one of xk or xk−1 must also be missing from xi1xi2 . . . xi` . Moreover, this is
a sufficient condition also for a monomial xi1xi2 . . . xi` to appear in Kn. Thus xi1xi2 . . . xi`

appears in Kn iff xi1xi2 . . . xi` can be obtained by x1 · x2 · · · · ·xn by removing disjoint pairs of
consecutive variables. Also, it is easy to observe that all the monomials in Kn have coefficient
one. Thus the coefficient of the monomial xi1 · xi2 · . . . · xi` in Kn is 1 iff xi1xi2 . . . xi` can be
obtained from x1 ·x2 · · · · ·xn by removing disjoint pairs of consecutive variables. Otherwise this
coefficient is zero.

Exercise 2 (10 Points). Prove that Kn(x1, x2, . . . , xn) = Kn(xn, xn−1, . . . , x1).

Solution 2 (Typeset by all students in the lecture). This directly follows since the (1, 1) entry
does not change under transposing a matrix and (AB)t = BtAt. Thus we have

Kn(x1, x2, . . . , xn) =

((
x1 1
1 0

)
·
(
x2 1
1 0

)
· . . . ·

(
xn 1
1 0

))
(1,1)

=

((
x1 1
1 0

)
·
(
x2 1
1 0

)
· . . . ·

(
xn 1
1 0

))t

(1,1)

=

((
xn 1
1 0

)t

·
(
xn−1 1

1 0

)t

· . . . ·
(
x1 1
1 0

)t
)

(1,1)

=

((
xn 1
1 0

)
·
(
xn−1 1

1 0

)
· . . . ·

(
x1 1
1 0

))
(1,1)

= Kn(xn, xn−1, . . . , x1)

https://people.mpi-inf.mpg.de/~cikenmey/teaching/winter1718/gct2/index.html


One can also prove Kn(x1, x2, . . . , xn) = Kn(xn, xn−1, . . . , x1) by reversing every edge in the
ABP computing Kn.

Remark by Ikenmeyer: One can also use Exercise 1: Adjacency of variables does not change
when we reverse the order.

Exercise 3 (10 Points). Prove that

Kn = det


x1 1 0 . . . 0

−1 x2 1
. . .

...

0 −1
. . . . . . 0

...
. . . . . . . . . 1

0 . . . 0 −1 xn

 .

Solution 3. In order to prove this we will first prove the following claim:

Kn(x1, x2, . . . , xn) = xn ·Kn−1(x1, x2, . . . , xn−1) + Kn−2(x1, x2, . . . , xn−2).

This is easy to see by looking at the ABP computing Kn or by a short calculation using the
definition of Kn as the (1,1)-entry of the product of matrices.

Now the actual exercise can be solved by induction. The base case for K2 is trivial since

det

(
x1 1
−1 x2

)
= x1x2 + 1

For the induction step we use Laplace to compute the determinant:

det


x1 1 0 . . . 0

−1 x2 1
. . .

...

0 −1
. . . . . . 0

...
. . . . . . . . . 1

0 . . . 0 −1 xn+1

 =

xn+1 · det


x1 1 0 . . . 0

−1 x2 1
. . .

...

0 −1
. . . . . . 0

...
. . . . . . . . . 1

0 . . . 0 −1 xn

 − (−1) · det


x1 1 0 . . . 0

−1 x2 1
. . .

...
...

. . . . . . . . . 0
0 . . . −1 xn−1 1


= xn+1 · detAn + detAn−1

where An denotes the matrix that is given in the exercise. Thus detAn satisfies the same
recursion formula as Kn which concludes the proof.

Exercise 4 (10 Points). For a homogeneous degree m polynomial h we define L(h) to be the
smallest n such that xn−m

1 h ∈ GLnKn (as usual, the variables in h are ordered consecutively).



In the lecture we showed that a sequence (hm) is in VPe iff its sequence L(hm) is polynomially
bounded. Prove that this is still true if we replace Kn by any of the two polynomials

K ′n = det


x1 1 0 . . . 0

1 x2 1
. . .

...

0 1
. . . . . . 0

...
. . . . . . . . . 1

0 . . . 0 1 xn


or

K ′′n = tr

((
x1 1
1 0

)(
x2 1
1 0

)
. . .

(
xn 1
1 0

))
Solution 4. For this, we need to show that K ′n and K ′′n can be used to approximate any
(hm) ∈ VPe with n ≤ poly(m), and vice-versa. As usual, we use the notation i =

√
−1. Now

we show that in ·Kn reduces to K ′n under suitable reductions.

Note that K ′n(i ·x1, i ·x2, . . . , i ·xn) = in · (Kn(x1, x2, . . . , xn)). This can be proved by induction
on n and using the recurrence for Kn, which was derived in the solution of exercise 3. Thus if
(hm) can be approximated by Kpoly(m) then it can also be approximated by K ′poly(m). Moreover,
this reduction from Kn to K ′n which we showed above can be easily modified to work in other
direction also. Thus (hm) can be approximated by Kpoly(m) iff (hm) can be approximated by

K ′poly(m). Thus (hm) ∈ VPe iff (hm) can be approximated by K ′poly(m).

Now we prove that K ′′poly(m) can be used to approximate any (hm) ∈ VPe . This directly follows
from Proposition 3.6 from the paper “On algebraic branching programs of small width”, see
Proposition 3.6 in https://arxiv.org/pdf/1702.05328.pdf. Moreover we also know that
(K ′′n) ∈ VPe. Thus (hm) ∈ VPe iff (hm) can be approximated by K ′′poly(m).

https://arxiv.org/pdf/1702.05328.pdf

