III
max planck institut

Exercises for Geometric complexity theory 2

https://people.mpi-inf.mpg.de/~cikenmey/teaching/winter1718/gct2/index.html
Exercise sheet 1 Solutions
Due: Tuesday, October 24, 2017

Total points : 40

Exercise 1 (10 Points). Let K_{n} denote the continuant, which is the (1,1)-entry of the product

$$
\left(\begin{array}{cc}
x_{1} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
x_{2} & 1 \\
1 & 0
\end{array}\right) \ldots\left(\begin{array}{cc}
x_{n} & 1 \\
1 & 0
\end{array}\right)
$$

What is the coefficient of the monomial $x_{i_{1}} \cdot x_{i_{2}} \cdot \ldots \cdot x_{i_{\ell}}$ in K_{n} ?
Solution 1. For this, we can look at the ABP computing K_{n}. By looking at this ABP, we note that if a monomial $x_{i_{1}} x_{i_{2}} \ldots x_{i_{\ell}}$ appears in K_{n} and a variable x_{k} is not present in $x_{i_{1}} x_{i_{2}} \ldots x_{i_{\ell}}$ then at least one of x_{k} or x_{k-1} must also be missing from $x_{i_{1}} x_{i_{2}} \ldots x_{i_{\ell}}$. Moreover, this is a sufficient condition also for a monomial $x_{i_{1}} x_{i_{2}} \ldots x_{i_{\ell}}$ to appear in K_{n}. Thus $x_{i_{1}} x_{i_{2}} \ldots x_{i_{\ell}}$ appears in K_{n} iff $x_{i_{1}} x_{i_{2}} \ldots x_{i_{\ell}}$ can be obtained by $x_{1} \cdot x_{2} \cdots x_{n}$ by removing disjoint pairs of consecutive variables. Also, it is easy to observe that all the monomials in K_{n} have coefficient one. Thus the coefficient of the monomial $x_{i_{1}} \cdot x_{i_{2}} \cdot \ldots \cdot x_{i_{\ell}}$ in K_{n} is 1 iff $x_{i_{1}} x_{i_{2}} \ldots x_{i_{\ell}}$ can be obtained from $x_{1} \cdot x_{2} \cdots \cdots x_{n}$ by removing disjoint pairs of consecutive variables. Otherwise this coefficient is zero.

Exercise 2 (10 Points). Prove that $K_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=K_{n}\left(x_{n}, x_{n-1}, \ldots, x_{1}\right)$.
Solution 2 (Typeset by all students in the lecture). This directly follows since the $(1,1)$ entry does not change under transposing a matrix and $(A B)^{t}=B^{t} A^{t}$. Thus we have

$$
\begin{aligned}
K_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\left(\left(\begin{array}{cc}
x_{1} & 1 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
x_{2} & 1 \\
1 & 0
\end{array}\right) \cdot \ldots \cdot\left(\begin{array}{cc}
x_{n} & 1 \\
1 & 0
\end{array}\right)\right)_{(1,1)} \\
& =\left(\left(\begin{array}{cc}
x_{1} & 1 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
x_{2} & 1 \\
1 & 0
\end{array}\right) \cdot \ldots \cdot\left(\begin{array}{cc}
x_{n} & 1 \\
1 & 0
\end{array}\right)\right)_{(1,1)}^{t} \\
& =\left(\left(\begin{array}{cc}
x_{n} & 1 \\
1 & 0
\end{array}\right)^{t} \cdot\left(\begin{array}{cc}
x_{n-1} & 1 \\
1 & 0
\end{array}\right)^{t} \cdot \ldots \cdot\left(\begin{array}{cc}
x_{1} & 1 \\
1 & 0
\end{array}\right)^{t}\right)_{(1,1)} \\
& =\left(\left(\begin{array}{cc}
x_{n} & 1 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
x_{n-1} & 1 \\
1 & 0
\end{array}\right) \cdot \ldots \cdot\left(\begin{array}{cc}
x_{1} & 1 \\
1 & 0
\end{array}\right)\right)_{(1,1)}=K_{n}\left(x_{n}, x_{n-1}, \ldots, x_{1}\right)
\end{aligned}
$$

One can also prove $K_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=K_{n}\left(x_{n}, x_{n-1}, \ldots, x_{1}\right)$ by reversing every edge in the ABP computing K_{n}.

Remark by Ikenmeyer: One can also use Exercise 1: Adjacency of variables does not change when we reverse the order.

Exercise 3 (10 Points). Prove that

$$
K_{n}=\operatorname{det}\left(\begin{array}{ccccc}
x_{1} & 1 & 0 & \ldots & 0 \\
-1 & x_{2} & 1 & \ddots & \vdots \\
0 & -1 & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & 1 \\
0 & \ldots & 0 & -1 & x_{n}
\end{array}\right)
$$

Solution 3. In order to prove this we will first prove the following claim:

$$
K_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{n} \cdot K_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)+K_{n-2}\left(x_{1}, x_{2}, \ldots, x_{n-2}\right)
$$

This is easy to see by looking at the ABP computing K_{n} or by a short calculation using the definition of K_{n} as the (1,1)-entry of the product of matrices.

Now the actual exercise can be solved by induction. The base case for K_{2} is trivial since

$$
\operatorname{det}\left(\begin{array}{cc}
x_{1} & 1 \\
-1 & x_{2}
\end{array}\right)=x_{1} x_{2}+1
$$

For the induction step we use Laplace to compute the determinant:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ccccc}
x_{1} & 1 & 0 & \ldots & 0 \\
-1 & x_{2} & 1 & \ddots & \vdots \\
0 & -1 & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & 1 \\
0 & \ldots & 0 & -1 & x_{n+1}
\end{array}\right) & = \\
x_{n+1} \cdot \operatorname{det}\left(\begin{array}{ccccc}
x_{1} & 1 & 0 & \ldots & 0 \\
-1 & x_{2} & 1 & \ddots & \vdots \\
0 & -1 & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & 1 \\
0 & \ldots & 0 & -1 & x_{n}
\end{array}\right) & -(-1) \cdot \operatorname{det}\left(\begin{array}{ccccc}
x_{1} & 1 & 0 & \ldots & 0 \\
-1 & x_{2} & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \ldots & -1 & x_{n-1} & 1
\end{array}\right) \\
& =x_{n+1} \cdot \operatorname{det} A_{n}+\operatorname{det} A_{n-1}
\end{aligned}
$$

where A_{n} denotes the matrix that is given in the exercise. Thus $\operatorname{det} A_{n}$ satisfies the same recursion formula as K_{n} which concludes the proof.

Exercise 4 (10 Points). For a homogeneous degree m polynomial h we define $L(h)$ to be the smallest n such that $x_{1}^{n-m} h \in \overline{\mathrm{GL}_{n} K_{n}}$ (as usual, the variables in h are ordered consecutively).

In the lecture we showed that a sequence $\left(h_{m}\right)$ is in $\overline{\mathrm{VP}_{e}}$ iff its sequence $L\left(h_{m}\right)$ is polynomially bounded. Prove that this is still true if we replace K_{n} by any of the two polynomials

$$
K_{n}^{\prime}=\operatorname{det}\left(\begin{array}{ccccc}
x_{1} & 1 & 0 & \ldots & 0 \\
1 & x_{2} & 1 & \ddots & \vdots \\
0 & 1 & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & 1 \\
0 & \ldots & 0 & 1 & x_{n}
\end{array}\right)
$$

or

$$
K_{n}^{\prime \prime}=\operatorname{tr}\left(\left(\begin{array}{cc}
x_{1} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
x_{2} & 1 \\
1 & 0
\end{array}\right) \ldots\left(\begin{array}{cc}
x_{n} & 1 \\
1 & 0
\end{array}\right)\right)
$$

Solution 4. For this, we need to show that K_{n}^{\prime} and $K_{n}^{\prime \prime}$ can be used to approximate any $\left(h_{m}\right) \in \overline{\mathrm{VP}_{e}}$ with $n \leq \operatorname{poly}(m)$, and vice-versa. As usual, we use the notation $i=\sqrt{-1}$. Now we show that $i^{n} \cdot K_{n}$ reduces to K_{n}^{\prime} under suitable reductions.

Note that $K_{n}^{\prime}\left(i \cdot x_{1}, i \cdot x_{2}, \ldots, i \cdot x_{n}\right)=i^{n} \cdot\left(K_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$. This can be proved by induction on n and using the recurrence for K_{n}, which was derived in the solution of exercise 3. Thus if $\left(h_{m}\right)$ can be approximated by $K_{\text {poly }(m)}$ then it can also be approximated by $K_{\text {poly }(m)}^{\prime}$. Moreover, this reduction from K_{n} to K_{n}^{\prime} which we showed above can be easily modified to work in other direction also. Thus $\left(h_{m}\right)$ can be approximated by $K_{\text {poly }(m)}$ iff $\left(h_{m}\right)$ can be approximated by $K_{\mathrm{poly}(m)}^{\prime}$. Thus $\left(h_{m}\right) \in \overline{\mathrm{VP}_{e}}$ iff $\left(h_{m}\right)$ can be approximated by $K_{\mathrm{poly}(m)}^{\prime}$.
Now we prove that $K_{\text {poly }(m)}^{\prime \prime}$ can be used to approximate any $\left(h_{m}\right) \in \overline{\mathrm{VP}_{e}}$. This directly follows from Proposition 3.6 from the paper "On algebraic branching programs of small width", see Proposition 3.6 in https://arxiv.org/pdf/1702.05328.pdf. Moreover we also know that $\left(K_{n}^{\prime \prime}\right) \in \mathrm{VP}_{e}$. Thus $\left(h_{m}\right) \in \overline{\mathrm{VP}}_{e}$ iff $\left(h_{m}\right)$ can be approximated by $K_{\mathrm{poly}(m)}^{\prime \prime}$.

