

Prof. Dr. Markus Bläser and Dr. Christian Ikenmeyer

Winter 2017/2018

Exercises for Geometric complexity theory 2

https://people.mpi-inf.mpg.de/~cikenmey/teaching/winter1718/gct2/index.html

Exercise sheet 2 Solutions

Due: Tuesday, November 7, 2017

Total points : 60

For three partitions λ, μ, ν of d let $k(\lambda, \mu, \nu)$ denote the Kronecker coefficient, i.e., the dimension of the \mathfrak{S}_d -invariant space dim $([\lambda] \otimes [\mu] \otimes [\nu])^{\mathfrak{S}_d}$.

Exercise 1 (10 Points). Determine k((2, 1), (2, 1), (2, 1)).

Solution 1. We know that $\dim([2,1] \otimes [2,1] \otimes [2,1]) = 8$. By computation, we can show that if symmetrize all the basis vectors of $[2,1] \otimes [2,1] \otimes [2,1]$ over \mathfrak{S}_3 , then the image of all such symmetrizations is spanned by the following vector.

which is clearly nonzero. This implies that k((2,1), (2,1), (2,1)) = 1.

Exercise 2 (10 Points). Let $\lambda \vdash d$. Let λ^t denote the transpose Young diagram of λ . Let $d \times 1$ denote the column partition. Prove that $k(d \times 1, \lambda, \lambda^t) \leq 1$.

20 bonus points if you also prove $k(d \times 1, \lambda, \lambda^t) = 1$.

Solution 2 (Typeset by all students in the lecture). We can again look at the dot diagrams. The $(d \times 1)$ shape is only a single hyperedge and thus is uninteresting. We can now group points directly by λ without loss of generality. λ^t now only has one way to separate the points inside those groups, as every new separation has to span all groups given by λ . Since this is unique we know that $k(d \times 1, \lambda, \lambda^t) \leq 1$.

Remark by Ikenmeyer: This is correct, but formally the pigeonhole principle is applied several times to see that every new separation has to span all groups.

Exercise 3 (20 Points). Let λ, μ, ν be partitions of d and let $\tilde{\lambda}, \tilde{\mu}, \tilde{\nu}$ be partitions of \tilde{d} . Prove the "semi-group property": If $k(\lambda, \mu, \nu) > 0$ and $k(\tilde{\lambda}, \tilde{\mu}, \tilde{\nu}) > 0$, then $k(\lambda + \tilde{\lambda}, \mu + \tilde{\mu}, \nu + \tilde{\nu}) \geq \max\{k(\lambda, \mu, \nu), k(\tilde{\lambda}, \tilde{\mu}, \tilde{\nu})\}$, where the addition of partitions is defined as adding row-lengths of the corresponding Young diagrams.

Hint: Look at the analogous proof for plethysm coefficients

Solution 3. Note that $\otimes^{3}\mathbb{C}^{n}$ is an irreducible variety for all n. Now apply Proposition 19.6.6 (The semi-group property) from https://people.mpi-inf.mpg.de/~cikenmey/teaching/summer17/introtogct/gct.pdf

to $Z = \mathbb{A} = \otimes^3 \mathbb{C}^n$ for some $n \ge d + \tilde{d}$.

Exercise 4 (20 Points). Let (i) denote the partition that only has a single row. Let λ, μ, ν be partitions of d. As a preliminary task, prove that the sequence

$$K_i := k(\lambda + (i), \mu + (i), \nu + (i))$$

is monotonously non-decreasing. Then prove that the sequence K_i stabilizes, i.e., $\exists i_0 \forall i \geq i_0$: $K_i = K_{i_0}$.

Solution 4 (Partially typeset by all students in the lecture). To prove the first case we do a case distinction. Namely the cases where $k(\lambda, \mu, \nu) > 0$ and $k(\lambda, \mu, \nu) = 0$ respectively. For the first case, we can just apply exercise 3.

In the second case, either K_i always is zero then it is trivially monotonously non-decreasing. Otherwise $K_j > 0$ for some j. Then we can again apply exercise 3 to get that the sequence K_i is monotonously non-decreasing.

Thus we have proven that the sequence is non-decreasing.

Now to prove the stabilising of the Kronecker coefficient we can look at our dot diagrams again. We can see that $\lambda + (i)$ has at most $|\lambda|$ dots connected in non singleton groups. So dot diagrams for $(\lambda + (i), \mu + (i), \nu + (i))$ together can only connect at most $|\lambda| + |\mu| + |\nu|$ dots into non-singleton groups. Thus the the choices are bound irrespective of i and we get there is a total upper bound on $k(\lambda + (i), \mu + (i), \nu + (i))$ resulting in K_i stabilizing.