Exercises for Geometric complexity theory 2

https://people.mpi-inf.mpg.de/~cikenmey/teaching/winter1718/gct2/index.html

Exercise sheet 3 Solutions
 Due: Tuesday, November 14, 2017

Total points : 40

As in the lecture, to each obstruction design \mathcal{H}_{n} we have the corresponding highest weight vector function $f_{\mathcal{H}_{n}}$.

Exercise 1 (10 Points). Consider two obstruction designs \mathcal{H}_{1} and \mathcal{H}_{2}. Take their union (the usual union of hyper-graphs by just drawing them next to each other) and call the resulting obstruction design \mathcal{H}_{3}. Prove that

$$
f_{\mathcal{H}_{3}}=f_{\mathcal{H}_{1}} \cdot f_{\mathcal{H}_{2}}
$$

as functions.
Solution 1 (Typeset by all students in the lecture). We have the following definition for $f_{\mathcal{H}}$:

$$
\begin{aligned}
f_{\mathcal{H}}(w) & =\sum_{J: \mathcal{H} \rightarrow \tau} \operatorname{eval}_{\mathcal{H}}(J)=\sum_{J: \mathcal{H} \rightarrow \tau} \prod_{k=1}^{3} \operatorname{eval}_{E^{(k)}}\left(J^{(k)}\right) \\
& =\sum_{J: \mathcal{H} \rightarrow \tau} \prod_{k=1}^{3} \prod_{e \in E^{(k)}} \operatorname{det} J^{(k)} \mid e
\end{aligned}
$$

Now we get:

$$
f_{\mathcal{H}_{1}} \cdot f_{\mathcal{H}_{2}}=\left(\sum_{J_{1}: \mathcal{H}_{1} \rightarrow \tau} \prod_{k=1}^{3} \prod_{e_{1} \in E_{1}^{(k)}} \operatorname{det} J_{1}^{(k)} \mid e_{1}\right) \cdot\left(\sum_{J_{2}: \mathcal{H}_{2} \rightarrow \tau} \prod_{l=1}^{3} \prod_{e_{2} \in E_{2}^{(l)}} \operatorname{det} J_{2}^{(l)} \mid e_{2}\right)
$$

Now since \mathcal{H}_{1} and \mathcal{H}_{2} are disjoint sets we can combine both functions to a new function $J: \mathcal{H}_{3} \rightarrow \tau$ where $\mathcal{H}_{3}=\mathcal{H}_{1} \cup \mathcal{H}_{2}$. Here J_{3} basically covers all possible pairs of J_{1} and J_{2}.

Now we can rewrite the product above as follows:

$$
\sum_{J_{3}: \mathcal{H}_{3} \rightarrow \tau}\left(\prod_{k=1}^{3} \prod_{e_{1} \in E_{1}^{(k)}} \operatorname{det} J_{1}^{(k)} \mid e_{1}\right) \cdot\left(\prod_{l=1}^{3} \prod_{e_{2} \in E_{2}^{(l)}} \operatorname{det} J_{2}^{(l)} \mid e_{2}\right)
$$

Now each summand has basically 6 factors each (where each of these factors is again a product of determinants, but we do not care about that right now). In the next step we just divide these 6 factors into 3 groups which consists of pairs. Doing that we obtain:

$$
\sum_{J_{3}: \mathcal{H}_{3} \rightarrow \tau} \prod_{k=1}^{3}\left[\left(\prod_{e_{1} \in E_{1}^{(k)}} \operatorname{det} J_{1}^{(k)} \mid e_{1}\right) \cdot\left(\prod_{e_{2} \in E_{2}^{(k)}} \operatorname{det} J_{2}^{(l)} \mid e_{2}\right)\right]
$$

Again we just the fact that \mathcal{H}_{1} and \mathcal{H}_{2} were disjoint obstruction designs to combine $E_{1}^{(k)}$ and $E_{2}^{(k)}$ into $E_{3}^{(k)}$ which then gives us:

$$
\sum_{J_{3}: \mathcal{H}_{3} \rightarrow \tau} \prod_{k=1}^{3} \prod_{e \in E_{3}^{(k)}} \operatorname{det} J_{3}^{(k)} \mid e=f_{\mathcal{H}_{3}}
$$

Exercise 2 (15 Points). Consider the following sequence of obstruction designs \mathcal{H}_{n}.

Prove that $f_{\mathcal{H}_{n}}$ is the zero function if $n>1$ is odd.
Solution 2 (Typeset by all students in the lecture). We can directly translate the obstruction design into the following tensor of young tableaux (in this case the example of $n=3$):

Note that the values in the columns of the second tableaux are exactly the rows in the third one and vice-versa.

If we now symmetrize over the subgroup of $\mathfrak{S}_{n^{2}}$ given by swapping two fixed rows in the second tableaux we get 0 , because the first tableaux is always invariant, the second one will get a negative sign since we swap an odd number of elements inside the columns and the third one stays invariant again by just swapping back the columns. Thus symmetrizing over $\mathfrak{S}_{n^{2}}$ will also yield the $\mathfrak{S}_{n^{2}}$ tensor so $f_{\mathcal{H}_{n}}$ is also the zero function if $n>1$ is odd.
Exercise 3 (15 Points). For odd n, find an obstruction design \mathcal{H}_{n}^{\prime} of the same type as \mathcal{H}_{n} in the previous exercise, but with $f_{\mathcal{H}_{n}^{\prime}} \neq 0$.
Solution 3. We can achieve this by making the dashed and the continuous hyper-edges the same. If we now evaluate we get:

$$
f_{\mathcal{H}_{n}^{\prime}}(w)=\sum_{J: \mathcal{H} \rightarrow \tau} \prod_{e \in E^{(1)}} \operatorname{det} J^{(1)}\left|e \cdot \prod_{e \in E^{(2)}} \operatorname{det} J^{(2)}\right| e \cdot \prod_{e \in E^{(3)}} \operatorname{det} J^{(3)} \mid e
$$

If we evaluate $f_{\mathcal{H}_{n}^{\prime}}(w)$ on $w=\sum_{i=1}^{n} e_{i} \otimes e_{i} \otimes g e_{i}$ for some $g \in \mathrm{GL}_{n}(\mathbb{R})$, then $\prod_{e \in E^{(2)}} \operatorname{det} J^{(2)} \mid e$ and $\prod_{e \in E^{(3)}} \operatorname{det} J^{(3)} \mid e$ always evaluate to the same real number and thus $\prod_{e \in E^{(2)}} \operatorname{det} J^{(2)}\left|e \cdot \prod_{e \in E^{(3)}} \operatorname{det} J^{(3)}\right| e$ is always non-negative. If we assume that the first row of g is positive, $\prod_{e \in E^{(1)}} \operatorname{det} J^{(1)} \mid e$ is always positive.

It is also easy to observe that there are terms $\prod_{e \in E^{(1)}} \operatorname{det} J^{(1)}\left|e \cdot \prod_{e \in E^{(2)}} \operatorname{det} J^{(2)}\right| e \cdot \prod_{e \in E^{(3)}} \operatorname{det} J^{(3)} \mid e$ in above sum which evaluate to non-zero. Thus $f_{\mathcal{H}_{n}^{\prime}}(w) \neq 0$.

