Exercises for Geometric complexity theory 2

https://people.mpi-inf.mpg.de/~cikenmey/teaching/winter1718/gct2/index.html
Exercise sheet 5 Solutions
Due: Tuesday, November 28, 2017

Total points : 40

Exercise 1 (15 Points). Let $A=M \otimes N^{*}, B=N \otimes L^{*}$, and $C=L \otimes M^{*}$ with $\operatorname{dim} M=m$, $\operatorname{dim} N=n$, and $\operatorname{dim} L=\ell$, that is, A can be viewed as the vector space of $m \times n$-matrices, etc. Let $\langle m, n, \ell\rangle \in A \otimes B \otimes C$ be the tensor of the multiplication of $m \times n$-matrices with $n \times \ell$-matrices. Prove that

$$
\langle m, n, \ell\rangle \cong \operatorname{Id}_{M} \otimes \operatorname{Id}_{N} \otimes \operatorname{Id}_{L}
$$

Solution 1 (Typeset by all students in the lecture). Our first observation is the following fact

$$
\begin{equation*}
A \otimes B \otimes C \cong\left(M \otimes N^{*}\right) \otimes\left(N \otimes L^{*}\right) \otimes\left(L \otimes M^{*}\right) \cong\left(M \otimes M^{*}\right) \otimes\left(N \otimes N^{*}\right) \otimes\left(L \otimes L^{*}\right) \tag{0.1}
\end{equation*}
$$

We see $X \otimes X^{*}$ as the space of $(x \times x)$ matrices where x is the dimension of X. Furthermore we can see $\langle m, n, \ell\rangle$ as a trilinear map that lives in $A^{*} \times B^{*} \times C^{*} \rightarrow \mathbb{F}$.

Now since $T:=\langle m, n, \ell\rangle$ denotes the matrix multiplication tensor we can conclude that for an element $\left(x_{i, i^{\prime}}, y_{j, j^{\prime}}, z_{h, h^{\prime}}\right) \in A^{*} \times B^{*} \times C^{*}$ we have :

$$
T\left(x_{i, i^{\prime}}, y_{j, j^{\prime}}, z_{h, h^{\prime}}\right)= \begin{cases}1 & \text { if } i^{\prime}=j, j^{\prime}=h \text { and } i=h^{\prime} \tag{0.2}\\ 0 & \text { else }\end{cases}
$$

Using the canonical isomorphism that we get from our first observation and the conditions we get from (0.2) we can see T as the trilinear map
$T:\left(M^{*} \otimes M\right) \times\left(N^{*} \otimes N\right) \times\left(L^{*} \otimes L\right) \rightarrow \mathbb{F},\left(x_{h^{\prime}, i}, y_{i^{\prime}, j}, z_{j^{\prime}, h}\right) \mapsto \begin{cases}1 & \text { if } h^{\prime}=i, i^{\prime}=j \text { and } j^{\prime}=h \\ 0 & \text { else }\end{cases}$
Thus only elements of the form

$$
\left(x_{i, i}, y_{j, j}, z_{h, h}\right)
$$

get mapped to 1 and everything else becomes 0 .
Now that is exactly the map that corresponds to the tensor

$$
\mathrm{Id}_{M} \otimes \operatorname{Id}_{M} \otimes \operatorname{Id}_{L}
$$

Exercise 2 (15 Points). Let V be an irreducible GL_{n}-representation. Prove that V is also irreducible as an SL_{n}-representation, where SL_{n} is the group of matrices with determinant equal to 1 .

Solution 2 (Typeset by all students in the lecture). Let V be an irreducible GL_{n}-representation. Now assume that V is not irreducible as an SL_{n}-representation. That means that there exists a non-trivial linear subspace $W \subseteq V$ such that W is closed under the action of SL_{n} :

$$
\begin{equation*}
\forall s \in \mathrm{SL}_{n}: \forall w \in W: s w \in W \tag{0.3}
\end{equation*}
$$

Since V is irreducible as a GL_{n}-representation there is a $g \in \mathrm{GL}_{n}$ with $\operatorname{det}(g) \neq 1$ (due to (3)) and $w^{*} \in W$ such that:

$$
\begin{equation*}
g w^{*} \notin W \tag{0.4}
\end{equation*}
$$

Now define :

$$
s:=\frac{1}{\sqrt[n]{\operatorname{det}(g))}} g
$$

Note that $\operatorname{det}(s)=1$ such that $s \in \mathrm{SL}_{n}$.
Using (0.3) we further get:

$$
s w^{*} \in W
$$

But since W was a linear subgroup of V we also have that

$$
\sqrt[n]{\operatorname{det}(g)} \cdot s w^{*}=\sqrt[n]{\operatorname{det}(g)} \cdot \frac{1}{\sqrt[n]{\operatorname{det}(g))}} g w^{*}=g w^{*} \in W
$$

which contradicts (0.4).
Thus W is irreducible as an SL_{n}-representation.
Exercise 3 (10 Points). Let W be a vector space of dimension 2 and let $\ell, \ell_{1}, \ell_{2}, \ldots, \ell_{n-1} \in W$ be pairwise independent, i.e., $\operatorname{dim}(\langle a, b\rangle)=2$ for all $a, b \in\left\{\ell, \ell_{1}, \ell_{2}, \ldots, \ell_{n-1}\right\}$ with $a \neq b$. Prove that there is a $g \in S^{n-1} W^{*}$ that vanishes on $\ell_{1}, \ell_{2}, \ldots, \ell_{n-1}$, but not on ℓ.

Solution 3. Since $\operatorname{dim}\left(\left\langle\ell, \ell_{1}\right\rangle\right)=2$, we can assume that $\left\{\ell, \ell_{1}\right\}$ is a basis of W. Thus there exist scalars $\lambda_{2}, \mu_{2}, \lambda_{3}, \mu_{3}, \ldots, \lambda_{n-1}, \mu_{n-1}$ such that $\ell_{j}=\lambda_{j} \ell+\mu_{j} \ell_{1}$ for $j \in\{2,3, \ldots, n-1\}$. Note that $\lambda_{2}, \mu_{2}, \lambda_{3}, \mu_{3}, \ldots, \lambda_{n-1}, \mu_{n-1}$ are all non-zero because otherwise some ℓ_{j} (for $j>2$) would not be independent of ℓ or ℓ_{1}. Now let $x, y \in W^{*}$ be such that $x(\ell)=1, x\left(\ell_{1}\right)=0, y(\ell)=0, y\left(\ell_{1}\right)=1$.

Thus $\{x, y\}$ is a basis of W^{*}. Now consider the following elements $f_{1}, f_{2}, \ldots, f_{n-1}$ of W^{*}, where $f_{1}=x$ and $f_{j}=\mu_{j} x-\lambda_{j} y$ for $j \in\{2,3, \ldots, n-1\}$. It is easy to observe that $f_{j}\left(\ell_{j}\right)=0$ for $j \in\{1,2, \ldots, n-1\}$. Consider now $g=f_{1} \cdot f_{2} \cdots \cdots f_{n-1}$. Note that f is a bi-variate homogeneous polynomial in x, y of degree $n-1$. Thus $g \in S^{n-1} W^{*}$, and by the choice of f_{j} 's we know that g vanishes on $\ell_{1}, \ell_{2}, \ldots, \ell_{n-1}$. Also $g(\ell)=1 \cdot \mu_{2} \cdot \mu_{3} \cdots \cdots \mu_{n-1}$, since all μ_{j} 's are non-zero we get that $g(\ell) \neq 0$. Thus g vanishes on $\ell_{1}, \ell_{2}, \ldots, \ell_{n-1}$, but not on ℓ.

