III
max planck institut

Exercises for Geometric complexity theory 2
https://people.mpi-inf.mpg.de/~cikenmey/teaching/winter1718/gct2/index.html
Exercise sheet 6 Solutions
Due: Tuesday, December 12, 2017

Total points : 40

Exercise 1 (10 Points). Prove that the unit tensor $\sum_{i=1}^{n} e_{i} \otimes e_{i} \otimes e_{i} \in \mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ is characterized by its stabilizer (which is a subgroup in $\mathrm{GL}_{n} \times \mathrm{GL}_{n} \times \mathrm{GL}_{n}$). You do not have to determine the stabilizer.

Solution 1. We use the notation $D\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ to denote the $n \times n$ diagonal matrix with a_{1}, \ldots, a_{n} on the diagonal. Let ζ be a primitive third root of unity. Consider the following subgroup H of $\mathrm{GL}_{n} \times \mathrm{GL}_{n} \times \mathrm{GL}_{n}$.

$$
H=\left\{(h, h, h) \mid h=D\left(\zeta^{\ell_{1}}, \zeta^{\ell_{2}}, \ldots, \zeta^{\ell_{n}}\right), \ell_{i} \in\{0,1,2\}\right\} \simeq\left(\mathbb{Z}_{3}\right)^{n}
$$

It is easy to see that $\sum_{i=1}^{n} e_{i} \otimes e_{i} \otimes e_{i}$ is invariant under the action of H. Also, let $e_{i} \otimes e_{j} \otimes e_{k}$ be a basis vector of $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, where i, j, k are not equal to each other, i.e, $e_{i} \otimes e_{j} \otimes e_{k} \neq$ $e_{i} \otimes e_{i} \otimes e_{i}$. We show now that under the symmetrization of $H, e_{i} \otimes e_{j} \otimes e_{k}$ maps to zero. WLOG assume that $k \neq j$ and $k \neq i$ (but we allow $i=j$ or $i \neq j$). We consider $G_{k} \leq H$, $G_{k}:=\left\{(h, h, h) \mid h=D\left(1,1, \ldots, 1, \zeta^{\ell}, 1, \ldots, 1\right), \ell \in\{0,1,2\}\right\} \simeq \mathbb{Z}_{3}$, where ζ^{ℓ} is at position k. Thus we have

$$
\begin{aligned}
\sum_{(h, h, h) \in G_{k}} h e_{i} \otimes h e_{j} \otimes h e_{k} & =\sum_{k^{\prime} \in\{0,1,2\}} e_{i} \otimes e_{j} \otimes \zeta^{k^{\prime}} e_{k} \\
& =\left(1+\zeta+\zeta^{2}\right) e_{i} \otimes e_{j} \otimes e_{k} \\
& =0
\end{aligned}
$$

Thus if a tensor $v \in \mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ is invariant under the action of H then only rank- 1 tensors of the form $e_{i} \otimes e_{i} \otimes e_{i}$ can appear in the tensor decomposition of v. Thus we can assume that $v=\sum_{i=1}^{n} \alpha_{i} e_{i} \otimes e_{i} \otimes e_{i}$ with $\alpha_{i} \in \mathbb{C}$.

Now we further look at the action of the subgroup $S=\left((\sigma, \sigma, \sigma) \mid \sigma \in \mathfrak{S}_{n}\right)$. It is clear that if v is invariant under the action of S then $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=\alpha$. Thus $v=\alpha \sum_{i=1}^{n} e_{i} \otimes e_{i} \otimes e_{i}$. Hence $\sum_{i=1}^{n} e_{i} \otimes e_{i} \otimes e_{i}$ is characterized by its stabilizer.

Following is an alternative solution typeset by all students in the lecture.

We begin the characterization of $v=\sum_{i=1}^{n} e_{i} \otimes e_{i} \otimes e_{i}$ by first looking at the following group elements:

$$
S_{1}:=\left\{\left.\left(I_{n}+(\alpha-1) E_{j, j}, I_{n}+(\alpha-1) E_{j, j}, I_{n}+\left(\frac{1}{\alpha^{2}}-1\right) E_{j, j}\right) \right\rvert\, j \in \mathbb{N}, \alpha \in \mathbb{C} \backslash\{0\}\right\}
$$

where $E_{i, j} \in \mathrm{GL}_{n}$ is the matrix with a 1 in row i and column j and zeroes everywhere else. S_{1} is basically the set of all group elements that rescale one of the basis elements and don't change the others, where the rescaling is α in the first two components and $\frac{1}{\alpha^{2}}$ in the last component. This set is in the stabilizer of v : For any $g \in S_{1}$, there is only one vector $e_{i_{0}} \otimes e_{i_{0}} \otimes e_{i_{0}}$ that is affected by the rescaling of $e_{i_{0}}$. In this vector, the scalings obviously cancel each other out.
S_{1} also gives us the first restriction: Any other vector with S_{1} in its stabilizer has the form $\sum_{i=1}^{n} \beta_{i} e_{i} \otimes e_{i} \otimes e_{i}$. Let $v=\sum_{1 \leq i, j, k \leq n} \beta_{i, j, k} e_{i} \otimes e_{j} \otimes e_{k}$ be a vector written as its decomposition into the standard basis. Any $e_{i} \otimes e_{j} \otimes e_{k}$ with i, j, k not all equal, will change its scalar for a $g \in S_{1}$ that rescales either e_{i}, e_{j} or e_{k}. This means that any vector with a $\beta_{i, j, k} \neq 0$ for i, j, k not all equal, will not have the whole S_{1} in its stabilizer.
Knowing that only vectors of the form $w=\sum_{i=1}^{n} \beta_{i} e_{i} \otimes e_{i} \otimes e_{i}$ might have the same stabilizer as v allows us to continue the characterization by using the symmetric group. The action $\rho(\sigma)=e_{i} \mapsto e_{\sigma(i)}$ can be embedded into the $G L_{n}$. We now look how a triple of transpositions $\sigma_{i, j}=((i j),(i j),(i j))$ changes $\sum_{i=1}^{n} \beta_{i} e_{i} \otimes e_{i} \otimes e_{i}$: since the e_{i} get swapped with the e_{j}, we now know that after the action of $\sigma_{i, j}$ the coefficients β_{i} and β_{j} have switched places. Thus we know that a vector w defined as above has $\sigma_{i, j}$ in its stabilizer if and only if $\beta_{i}=\beta_{j}$.

With this argument, we now know that S_{1} and $S_{2}:=\left\{\sigma_{i, j} \mid 1 \leq i, j \leq n, i \neq j\right\}$ are in the stabilizer of v and uniquely characterize v.

Exercise 2 (20 Points). Let $\lambda \vdash n$. We know from Gay's theorem that the $(n \times 1)$-weight space in the irreducible GL_{n} representation $\{\lambda\}$ is isomorphic to the Specht module $[\lambda]$ as an \mathfrak{S}_{n}-representation.

For some n of your choice, find a partition $\mu \vdash 2 n$ such that the $(n \times 2)$-weight space of $\{\mu\}$ is not irreducible as an \mathfrak{S}_{n}-representation.

Solution 2. We choose $n=3$ and $\mu=(4,2)$. The (3×2)-weight space $\{\nu\}$ of $\{\mu\}$ is spanned by the following tableaux.

$$
\begin{array}{|l|l|l|l|l|l|l}
\hline 1 & 1 & 2 & 3 \\
\hline 2 & 3 & & \\
\hline 1 & 1 & 2 & 2 \\
\hline 3 & 3 & & \\
\text { and }
\end{array} \begin{array}{|l|l|l|l|}
\hline 1 & 1 & 3 & 3 \\
\hline 2 & 2 & & \\
\hline
\end{array}
$$

Thus $\operatorname{dim}(\{\nu\})=3$. But then $\{\nu\}$ can not be an irreducible \mathfrak{S}_{3}-representation because dimension of any irreducible \mathfrak{S}_{3}-representation ie either 1 or 2 . This is because $[3],[2,1]$ and $[1,1,1]$ are the only irreducible \mathfrak{S}_{3}-representations, we have $\operatorname{dim}([1,1,1])=\operatorname{dim}([3])=1$ and $\operatorname{dim}([2,1])=2$.

Exercise 3 (10 Points). Let $v:=x_{1}^{3}+x_{2}^{3} \in \operatorname{Sym}^{3} \mathbb{C}^{2}$. Determine the multiplicities

$$
\operatorname{mult}_{(5,4)} \mathbb{C}\left[\mathrm{GL}_{2} v\right]_{3}
$$

and

$$
\operatorname{mult}_{(6,3)} \mathbb{C}\left[\mathrm{GL}_{2} v\right]_{3}
$$

Solution 3 (Typeset by all students in the lecture). We know mult(5,4) $\mathbb{C}\left[\mathrm{GL}_{2} v\right]_{3}=$ $\operatorname{dim}\left(\{\lambda\}^{\operatorname{Stab}(v)}\right)$. As characterized in the lecture $\operatorname{Stab}(v)=\mathbb{Z}_{3}^{2} \rtimes \mathfrak{S}_{2}$ and a basis of $\{\lambda\}^{\mathbb{Z}_{3}^{2}}$ is given by Young tableaux of shape λ where the numbers 1 and 2 appear a multiple of 3 times. For $\lambda=(5,4)$ we have to start with	1	1	1	
2	2	2		but can not fill it such that numbers 1 and 2 appear a multiple of 3 times. So $\{(5,4)\}^{\mathbb{Z}_{3}^{2}}=0$ and thus mult $(5,4) \mathbb{C}\left[\mathrm{GL}_{2} v\right]_{3}$ is already 0 .

For $\lambda=(6,3)$ we only have two non-zero valid generating Young tableaux in $\{(6,3)\}^{\mathbb{Z}_{3}^{2}}$:

$$
\left.\begin{array}{|l|l|l|l|l|l}
\hline 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 2 & 2 & 2 & & & \\
\text { and } \\
\hline 1 & 1 & 1 & 1 & 2 & 2
\end{array}\right)
$$

Symmetrizing those over \mathfrak{S}_{2} both yield

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 2 & 2 & 2 & & & & \\
\hline 1 & 1 & 1 & 2 & 2 & 2 \\
\hline 2 & 2 & 2 & & & \\
\hline
\end{array}
$$

Thus mult ${ }_{(6,3)} \mathbb{C}\left[\mathrm{GL}_{2} v\right]_{3}=1$.

