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Exercise 1 (10 Points). Prove that the unit tensor
∑n

i=1 ei ⊗ ei ⊗ ei ∈ Cn ⊗ Cn ⊗ Cn is
characterized by its stabilizer (which is a subgroup in GLn × GLn × GLn). You do not have to
determine the stabilizer.

Solution 1. We use the notation D(a1, a2, . . . , an) to denote the n × n diagonal matrix with
a1, . . . , an on the diagonal. Let ζ be a primitive third root of unity. Consider the following
subgroup H of GLn × GLn × GLn.

H = {(h, h, h) | h = D(ζ`1 , ζ`2 , . . . , ζ`n), `i ∈ {0, 1, 2}} ' (Z3)
n

It is easy to see that
∑n

i=1 ei ⊗ ei ⊗ ei is invariant under the action of H. Also, let ei ⊗ ej ⊗ ek
be a basis vector of Cn ⊗ Cn ⊗ Cn, where i, j, k are not equal to each other, i.e, ei ⊗ ej ⊗ ek 6=
ei ⊗ ei ⊗ ei. We show now that under the symmetrization of H, ei ⊗ ej ⊗ ek maps to zero.
WLOG assume that k 6= j and k 6= i (but we allow i = j or i 6= j). We consider Gk ≤ H,
Gk := {(h, h, h) | h = D(1, 1, . . . , 1, ζ`, 1, . . . , 1), ` ∈ {0, 1, 2}} ' Z3, where ζ` is at position k.
Thus we have ∑

(h,h,h)∈Gk

hei ⊗ hej ⊗ hek =
∑

k′∈{0,1,2}

ei ⊗ ej ⊗ ζk
′
ek

= (1 + ζ + ζ2)ei ⊗ ej ⊗ ek
= 0

Thus if a tensor v ∈ Cn ⊗Cn ⊗Cn is invariant under the action of H then only rank-1 tensors
of the form ei ⊗ ei ⊗ ei can appear in the tensor decomposition of v. Thus we can assume that
v =

∑n
i=1 αiei ⊗ ei ⊗ ei with αi ∈ C.

Now we further look at the action of the subgroup S = ((σ, σ, σ) | σ ∈ Sn). It is clear that if v
is invariant under the action of S then α1 = α2 = · · · = αn = α. Thus v = α

∑n
i=1 ei ⊗ ei ⊗ ei.

Hence
∑n

i=1 ei ⊗ ei ⊗ ei is characterized by its stabilizer.

Following is an alternative solution typeset by all students in the lecture.
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We begin the characterization of v =
∑n

i=1 ei ⊗ ei ⊗ ei by first looking at the following group
elements:

S1 :=

{
(In + (α− 1)Ej,j, In + (α− 1)Ej,j, In + (

1

α2
− 1)Ej,j) | j ∈ N, α ∈ C \ {0}

}
where Ei,j ∈ GLn is the matrix with a 1 in row i and column j and zeroes everywhere else. S1

is basically the set of all group elements that rescale one of the basis elements and don’t change
the others, where the rescaling is α in the first two components and 1

α2 in the last component.
This set is in the stabilizer of v: For any g ∈ S1, there is only one vector ei0 ⊗ ei0 ⊗ ei0 that is
affected by the rescaling of ei0 . In this vector, the scalings obviously cancel each other out.

S1 also gives us the first restriction: Any other vector with S1 in its stabilizer has the form∑n
i=1 βiei⊗ ei⊗ ei. Let v =

∑
1≤i,j,k≤n βi,j,kei⊗ ej ⊗ ek be a vector written as its decomposition

into the standard basis. Any ei ⊗ ej ⊗ ek with i, j, k not all equal, will change its scalar for a
g ∈ S1 that rescales either ei, ej or ek. This means that any vector with a βi,j,k 6= 0 for i, j, k
not all equal, will not have the whole S1 in its stabilizer.

Knowing that only vectors of the form w =
∑n

i=1 βiei ⊗ ei ⊗ ei might have the same stabilizer
as v allows us to continue the characterization by using the symmetric group. The action
ρ(σ) = ei 7→ eσ(i) can be embedded into the GLn. We now look how a triple of transpositions
σi,j = ((ij), (ij), (ij)) changes

∑n
i=1 βiei⊗ ei⊗ ei: since the ei get swapped with the ej, we now

know that after the action of σi,j the coefficients βi and βj have switched places. Thus we know
that a vector w defined as above has σi,j in its stabilizer if and only if βi = βj.

With this argument, we now know that S1 and S2 := {σi,j | 1 ≤ i, j ≤ n, i 6= j} are in the
stabilizer of v and uniquely characterize v.

Exercise 2 (20 Points). Let λ ` n . We know from Gay’s theorem that the (n × 1)-weight
space in the irreducible GLn representation {λ} is isomorphic to the Specht module [λ] as an
Sn-representation.

For some n of your choice, find a partition µ ` 2n such that the (n× 2)-weight space of {µ} is
not irreducible as an Sn-representation.

Solution 2. We choose n = 3 and µ = (4, 2). The (3× 2)-weight space {ν} of {µ} is spanned
by the following tableaux.

1 1 2 3
2 3

, 1 1 2 2
3 3

and 1 1 3 3
2 2

Thus dim({ν}) = 3. But then {ν} can not be an irreducible S3-representation because di-
mension of any irreducible S3-representation ie either 1 or 2. This is because [3], [2, 1] and
[1, 1, 1] are the only irreducible S3-representations, we have dim([1, 1, 1]) = dim([3]) = 1 and
dim([2, 1]) = 2.

Exercise 3 (10 Points). Let v := x31 + x32 ∈ Sym3C2 . Determine the multiplicities

mult(5,4)C[GL2v]3

and
mult(6,3)C[GL2v]3.



Solution 3 (Typeset by all students in the lecture). We know mult(5,4)C[GL2v]3 =

dim
(
{λ}Stab(v)

)
. As characterized in the lecture Stab(v) = Z2

3 o S2 and a basis of {λ}Z2
3

is given by Young tableaux of shape λ where the numbers 1 and 2 appear a multiple of 3 times.

For λ = (5, 4) we have to start with 1 1 1
2 2 2

but can not fill it such that numbers 1 and

2 appear a multiple of 3 times. So {(5, 4)}Z2
3 = 0 and thus mult(5,4)C[GL2v]3 is already 0.

For λ = (6, 3) we only have two non-zero valid generating Young tableaux in {(6, 3)}Z2
3 :

1 1 1 1 1 1
2 2 2

and 1 1 1 2 2 2
2 2 2

Symmetrizing those over S2 both yield

1 1 1 1 1 1
2 2 2

− 1 1 1 2 2 2
2 2 2

Thus mult(6,3)C[GL2v]3 = 1.


