

Prof. Dr. Markus Bläser and Dr. Christian Ikenmeyer

Winter 2017/2018

Exercises for Geometric complexity theory 2

https://people.mpi-inf.mpg.de/~cikenmey/teaching/winter1718/gct2/index.html

Exercise sheet 7 Solutions

Due: Tuesday, December 19, 2017

Total points : 40

Let T_{SL_n} denote the group of diagonal matrices with determinant 1. Consider the group $G := T_{\mathsf{SL}_n} \times T_{\mathsf{SL}_n}$, which acts on $\operatorname{Sym}^n(\mathbb{C}^n \otimes \mathbb{C}^n)$ and preserves both the determinant and the permanent. The group $\mathfrak{S}_n \otimes \mathfrak{S}_n$ acts on the space of *G*-invariants $V := (\operatorname{Sym}^n(\mathbb{C}^n \otimes \mathbb{C}^n))^G$ and we saw in the lecture that per_n is the unique polynomial (up to scale) of type ((n), (n)) in *V*, whereas \det_n is the unique polynomial (up to scale) of type $((1^n), (1^n))$ in *V*. In the following exercises, consider $W := (\operatorname{Sym}^{2n}(\mathbb{C}^n \otimes \mathbb{C}^n))^G$. Analogously to *V*, there is a canonical action of $\mathfrak{S}_n \otimes \mathfrak{S}_n$ on *W*.

By a result in the lecture we know that if $|\lambda| = |\mu|$ then

$$\dim\left(\left([\lambda]\otimes[\mu]\right)^{\mathfrak{S}_{|\lambda|}}\right) = \begin{cases} 1 & \text{if } \lambda = \mu\\ 0 & \text{otherwise} \end{cases}$$
(0.1)

By Schur-Weyl duality we know that

$$\operatorname{Sym}^{2n}(\mathbb{C}^n \otimes \mathbb{C}^n) \cong \bigoplus_{\lambda, \mu \vdash_n 2n} \{\lambda\} \otimes \{\mu\} \otimes ([\lambda] \otimes [\mu])^{\mathfrak{S}_{2n}}$$

Thus by using (0.1) we get that

$$\operatorname{Sym}^{2n}(\mathbb{C}^n \otimes \mathbb{C}^n) \cong \bigoplus_{\lambda \vdash_n 2n} \{\lambda\} \otimes \{\lambda\}$$

Hence

$$W = \left(\operatorname{Sym}^{2n}(\mathbb{C}^n \otimes \mathbb{C}^n) \right)^{T_{\mathsf{SL}_n} \times T_{\mathsf{SL}_n}} \cong \bigoplus_{\lambda \vdash_n 2n} \{\lambda\}^{T_{\mathsf{SL}_n}} \otimes \{\lambda\}^{T_{\mathsf{SL}_n}}$$

If $\lambda \vdash_n 2n$ then $\{\lambda\}^{T_{\mathsf{SL}n}}$ has a basis of semi-standard tableaux of shape λ in which each number $k \in \{1, 2, \ldots, n\}$ appears same number of times, i.e., exactly 2 times.

Thus we have the following lemma.

Lemma 1. If $\lambda \vdash_n 2n$ and

 V_{λ} :=Vector space spanned by semi-standard tableaux of shape λ in which each number from $\{1, 2, ..., n\}$ appears exactly twice.

Then

$$W \cong \bigoplus_{\lambda \vdash_n 2n} V_\lambda \otimes V_\lambda$$

Exercise 1 (4 Points). Prove that in W there are nonzero polynomials of type ((n), (n)).

Solution 1. By lemma 1, we know that $1 1 2 2 \dots n n \otimes 1 1 2 2 \dots n n$ is an element of W and is of type ((n), (n)) because because both the components are invariant under the action of $\mathfrak{S}_n \otimes \mathfrak{S}_n$.

Exercise 2 (4 Points). Let n > 1 and prove that in W the polynomials of type ((n), (n)) are not unique up to scale.

2 | 2

. . . .

 $n \mid n$

Solution 2. By lemma 1, we know that $\begin{vmatrix} 2 & 2 \\ \vdots & \vdots \\ \vdots & \vdots$

((n), (n)) because both the components are invariant under the action of $\mathfrak{S}_n \otimes \mathfrak{S}_n$.

Exercise 3 (4 Points). Prove that in W there are nonzero polynomials of type $((1^n), (1^n))$.

 $n \mid n$

Solution 3. By lemma 1, we know that

is an element of W and is of type

W. Also, it is of type $((1^n), (1^n))$ because we have the following equation for action of any $(\sigma, \pi) \in \mathfrak{S}_n \otimes \mathfrak{S}_n$.

Exercise 4 (12 Points). Let n = 3 and prove that in W the polynomials of type $((1^3), (1^3))$ are not unique up to scale.

Solution 4. It is easy to verify that $\begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 3 & 3 & 3 \\ 2 & 3 & 3 & 3 \end{bmatrix}$ are of type $((1^3), (1^3))$.

Exercise 5 (16 Points). Prove that for n = 6 the space W contains a nonzero polynomial of type $((6), (1^6))$.

You can use that the GL_6 -representation $\operatorname{Sym}^6(\operatorname{Sym}^2 \mathbb{C}^6)$ decomposes as $\{(12)\} \oplus \{(10,2)\} \oplus \{(8,4)\} \oplus \{(8,2^2)\} \oplus \{(6^2)\} \oplus \{(6,4,2)\} \oplus \{(6,2^3)\} \oplus \{(4^3)\} \oplus \{(4^2,2^2)\} \oplus \{(4,2^4)\} \oplus \{(2^6)\}$

and that the GL_6 -representation $\bigwedge^6(\operatorname{Sym}^2 \mathbb{C}^6)$ decomposes as $\{(7,1^5)\} \oplus \{(6,3,1^3)\} \oplus \{(5,4,2,1)\} \oplus \{(4^3)\}.$

Solution 5. We use the following fact which easily follows from Schur-Weyl duality : $HWV_{(4^3)}(\otimes^6(Sym^2 \mathbb{C}^6) \cong [4^3]^{\mathfrak{S}_2^6}$ has a basis consisting of semi-standard tableaux of shape (4³) in which each entry appears twice (see Corollary 18.3.11 in http://people.mpi-inf.mpg.de/~cikenmey/teaching/summer17/introtogct/gct.pdf).

By Proposition 18.3.2 in http://people.mpi-inf.mpg.de/~cikenmey/teaching/summer17/ introtogct/gct.pdf, we know that

$$a_{(4^3)}(6,2) = \dim[4^3]^{\mathfrak{S}_2 \wr \mathfrak{S}_6} = \dim(\mathrm{HWV}_{(4^3)}(\mathrm{Sym}^6(\mathrm{Sym}^2 \mathbb{C}^6)))$$

Since we have

$$\operatorname{Sym}^{6}(\operatorname{Sym}^{2}\mathbb{C}^{6}) \cong \{(12)\} \oplus \{(10,2)\} \oplus \{(8,4)\} \oplus \{(8,2^{2})\} \oplus \{(6^{2})\} \oplus \{(6,4,2)\} \oplus \{(6,2^{3})\} \oplus \{(4^{3})\} \oplus \{(4^{2},2^{2})\} \oplus \{(4,2^{4})\} \oplus \{(2^{6})\}$$

We get that $a_{(4^3)}(6,2) \neq 0$. On the other hand, we know that elements of $[4^3]^{\mathfrak{S}_2 \wr \mathfrak{S}_6}$ are linear combinations of semi-standard tableaux of shape (4^3) and of content 6×2 , which are invariant under the action of \mathfrak{S}_6 . Thus elements of $[4^3]^{\mathfrak{S}_2 \wr \mathfrak{S}_6}$ are of type (6).

We know that $[4^3]^{\mathfrak{S}_2^6}$ is spanned by semi-standard tableaux of shape (4³) and of content 6×2 . Let us define

$$U := \{ T \in [4^3]^{\mathfrak{S}_2^6} \mid \forall \sigma \in \mathfrak{S}_6 : \sigma T = \operatorname{sgn}(\sigma)T \}$$

Note that the elements of U are of the type (1^6) .

We have that $\dim(\operatorname{HWV}_{(4^3)}(\bigwedge^6(\operatorname{Sym}^2\mathbb{C}^6)) = \dim(U)$. Since we have

$$\bigwedge^{6} (\operatorname{Sym}^{2} \mathbb{C}^{6}) \cong \{(7, 1^{5})\} \oplus \{(6, 3, 1^{3})\} \oplus \{(5, 4, 2, 1)\} \oplus \{(4^{3})\}$$

We get that $\dim(U) \neq 0$.

Let $w_1 \in [4^3]^{\mathfrak{S}_2 \wr \mathfrak{S}_6}$ and $w_2 \in U$ be any non-zero elements. Then $w_1 \otimes w_2$ is a nonzero polynomial of type $((6), (1^6))$ in $W = (\text{Sym}^{12}(\mathbb{C}^6 \otimes \mathbb{C}^6))^{T_{\mathsf{SL}_6} \times T_{\mathsf{SL}_6}}$.