Exercises for Geometric complexity theory 2

https://people.mpi-inf.mpg.de/~cikenmey/teaching/winter1718/gct2/index.html
Exercise sheet 7 Solutions
Due: Tuesday, December 19, 2017

Total points : 40

Let $T_{\mathrm{SL}_{n}}$ denote the group of diagonal matrices with determinant 1. Consider the group $G:=T_{\mathrm{SL}_{n}} \times T_{\mathrm{SL}_{n}}$, which acts on $\operatorname{Sym}^{n}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)$ and preserves both the determinant and the permanent. The group $\mathfrak{S}_{n} \otimes \mathfrak{S}_{n}$ acts on the space of G-invariants $V:=\left(\operatorname{Sym}^{n}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)\right)^{G}$ and we saw in the lecture that per_{n} is the unique polynomial (up to scale) of type $((n),(n))$ in V, whereas det_{n} is the unique polynomial (up to scale) of type $\left(\left(1^{n}\right),\left(1^{n}\right)\right)$ in V. In the following exercises, consider $W:=\left(\operatorname{Sym}^{2 n}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)\right)^{G}$. Analogously to V, there is a canonical action of $\mathfrak{S}_{n} \otimes \mathfrak{S}_{n}$ on W.

By a result in the lecture we know that if $|\lambda|=|\mu|$ then

$$
\operatorname{dim}\left(([\lambda] \otimes[\mu])^{\mathfrak{S}_{|\lambda|}}\right)= \begin{cases}1 & \text { if } \lambda=\mu \tag{0.1}\\ 0 & \text { otherwise }\end{cases}
$$

By Schur-Weyl duality we know that

$$
\operatorname{Sym}^{2 n}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right) \cong \bigoplus_{\lambda, \mu \vdash \vdash_{n} 2 n}\{\lambda\} \otimes\{\mu\} \otimes([\lambda] \otimes[\mu])^{\mathfrak{S}_{2 n}}
$$

Thus by using (0.1) we get that

$$
\operatorname{Sym}^{2 n}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right) \cong \bigoplus_{\lambda \vdash_{n} 2 n}\{\lambda\} \otimes\{\lambda\}
$$

Hence

$$
W=\left(\operatorname{Sym}^{2 n}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)\right)^{T_{\mathrm{SL} L_{n}} \times T_{\mathrm{SL} L_{n}}} \cong \bigoplus_{\lambda \vdash_{n} 2 n}\{\lambda\}^{T_{\mathrm{S} L_{n}}} \otimes\{\lambda\}^{T_{\mathrm{SL}}} \boldsymbol{}
$$

If $\lambda \vdash_{n} 2 n$ then $\{\lambda\}^{T_{\text {SL }}}$ has a basis of semi-standard tableaux of shape λ in which each number $k \in\{1,2, \ldots, n\}$ appears same number of times, i.e, exactly 2 times.

Thus we have the following lemma.
Lemma 1. If $\lambda \vdash_{n} 2 n$ and
$V_{\lambda}:=$ Vector space spanned by semi-standard tableaux of shape λ in which each number from $\{1,2, \ldots, n\}$ appears exactly twice.

Then

$$
W \cong \bigoplus_{\lambda \vdash_{n} 2 n} V_{\lambda} \otimes V_{\lambda}
$$

Exercise 1 (4 Points). Prove that in W there are nonzero polynomials of type ($(n),(n))$.

Solution 1. By lemma 1, we know that | 1 | 1 | 2 | 2 | \ldots | \ldots | n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | $2 \ldots \ldots . n$ | n | | |
| is an | | | | | | | element of W and is of type $((n),(n))$ because because both the components are invariant under the action of $\mathfrak{S}_{n} \otimes \mathfrak{S}_{n}$.

Exercise 2 (4 Points). Let $n>1$ and prove that in W the polynomials of type $((n),(n))$ are not unique up to scale.
 $((n),(n))$ because both the components are invariant under the action of $\mathfrak{S}_{n} \otimes \mathfrak{S}_{n}$.

Exercise 3 (4 Points). Prove that in W there are nonzero polynomials of type $\left(\left(1^{n}\right),\left(1^{n}\right)\right)$.

W. Also, it is of type $\left(\left(1^{n}\right),\left(1^{n}\right)\right)$ because we have the following equation for action of any $(\sigma, \pi) \in \mathfrak{S}_{n} \otimes \mathfrak{S}_{n}$.

Exercise 4 (12 Points). Let $n=3$ and prove that in W the polynomials of type $\left(\left(1^{3}\right),\left(1^{3}\right)\right)$ are not unique up to scale.
 type $\left(\left(1^{3}\right),\left(1^{3}\right)\right)$.

Exercise 5 (16 Points). Prove that for $n=6$ the space W contains a nonzero polynomial of type ($\left.(6),\left(1^{6}\right)\right)$.
You can use that the GL_{6}-representation $\operatorname{Sym}^{6}\left(\operatorname{Sym}^{2} \mathbb{C}^{6}\right)$ decomposes as $\{(12)\} \oplus\{(10,2)\} \oplus$ $\{(8,4)\} \oplus\left\{\left(8,2^{2}\right)\right\} \oplus\left\{\left(6^{2}\right)\right\} \oplus\{(6,4,2)\} \oplus\left\{\left(6,2^{3}\right)\right\} \oplus\left\{\left(4^{3}\right)\right\} \oplus\left\{\left(4^{2}, 2^{2}\right)\right\} \oplus\left\{\left(4,2^{4}\right)\right\} \oplus\left\{\left(2^{6}\right)\right\}$ and that the GL_{6}-representation $\bigwedge^{6}\left(\operatorname{Sym}^{2} \mathbb{C}^{6}\right)$ decomposes as $\left\{\left(7,1^{5}\right)\right\} \oplus\left\{\left(6,3,1^{3}\right)\right\} \oplus$ $\{(5,4,2,1)\} \oplus\left\{\left(4^{3}\right)\right\}$.

Solution 5. We use the following fact which easily follows from Schur-Weyl duality : $\operatorname{HWV}_{\left(4^{3}\right)}\left(\otimes^{6}\left(\mathrm{Sym}^{2} \mathbb{C}^{6}\right) \cong\left[4^{3}\right]^{\mathfrak{S}_{2}^{6}}\right.$ has a basis consisting of semi-standard tableaux of shape $\left(4^{3}\right)$ in which each entry appears twice (see Corollary 18.3.11 in http://people.mpi-inf.mpg.de/ ~cikenmey/teaching/summer17/introtogct/gct.pdf).

By Proposition 18.3.2 in http://people.mpi-inf.mpg.de/~cikenmey/teaching/summer17/ introtogct/gct.pdf, we know that

$$
a_{\left(4^{3}\right)}(6,2)=\operatorname{dim}\left[4^{3}\right]^{\mathfrak{S}_{2} 2 \mathfrak{G}_{6}}=\operatorname{dim}\left(\operatorname{HWV}_{\left(4^{3}\right)}\left(\operatorname{Sym}^{6}\left(\operatorname{Sym}^{2} \mathbb{C}^{6}\right)\right)\right.
$$

Since we have

$$
\begin{gathered}
\operatorname{Sym}^{6}\left(\operatorname{Sym}^{2} \mathbb{C}^{6}\right) \cong\{(12)\} \oplus\{(10,2)\} \oplus\{(8,4)\} \oplus\left\{\left(8,2^{2}\right)\right\} \oplus\left\{\left(6^{2}\right)\right\} \oplus \\
\quad\{(6,4,2)\} \oplus\left\{\left(6,2^{3}\right)\right\} \oplus\left\{\left(4^{3}\right)\right\} \oplus\left\{\left(4^{2}, 2^{2}\right)\right\} \oplus\left\{\left(4,2^{4}\right)\right\} \oplus\left\{\left(2^{6}\right)\right\}
\end{gathered}
$$

We get that $a_{\left(4^{3}\right)}(6,2) \neq 0$. On the other hand, we know that elements of $\left[4^{3}\right] \mathfrak{S}_{22} \mathfrak{S}_{6}$ are linear combinations of semi-standard tableaux of shape $\left(4^{3}\right)$ and of content 6×2, which are invariant under the action of \mathfrak{S}_{6}. Thus elements of $\left[4^{3}\right]^{\mathfrak{S}_{2} 2 \mathfrak{G}_{6}}$ are of type (6).
We know that $\left[4^{3}\right]^{\mathcal{S}_{2}^{6}}$ is spanned by semi-standard tableaux of shape $\left(4^{3}\right)$ and of content 6×2. Let us define

$$
U:=\left\{T \in\left[4^{3}\right]^{\mathfrak{S}_{2}^{6}} \mid \forall \sigma \in \mathfrak{S}_{6}: \sigma T=\operatorname{sgn}(\sigma) T\right\}
$$

Note that the elements of U are of the type $\left(1^{6}\right)$.
We have that $\operatorname{dim}\left(\operatorname{HWV}_{\left(4^{3}\right)}\left(\bigwedge^{6}\left(\operatorname{Sym}^{2} \mathbb{C}^{6}\right)\right)=\operatorname{dim}(U)\right.$. Since we have

$$
\bigwedge^{6}\left(\operatorname{Sym}^{2} \mathbb{C}^{6}\right) \cong\left\{\left(7,1^{5}\right)\right\} \oplus\left\{\left(6,3,1^{3}\right)\right\} \oplus\{(5,4,2,1)\} \oplus\left\{\left(4^{3}\right)\right\}
$$

We get that $\operatorname{dim}(U) \neq 0$.
Let $w_{1} \in\left[4^{3}\right]^{\mathfrak{S}_{2} l \mathscr{G}_{6}}$ and $w_{2} \in U$ be any non-zero elements. Then $w_{1} \otimes w_{2}$ is a nonzero polynomial of type $\left((6),\left(1^{6}\right)\right)$ in $W=\left(\operatorname{Sym}^{12}\left(\mathbb{C}^{6} \otimes \mathbb{C}^{6}\right)\right)^{T_{\text {SL }_{6}} \times T_{\text {SL }}}$.

