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Exercise 1 (10 Points). Prove that every complex matrix of finite order is diagonalizable.

Solution 1. The minimal polynomial µA of an n × n matrix A is the monic polynomial P of
least degree such that P (A) = 0. Any other polynomial Q with Q(A) = 0 is a (polynomial)
multiple of µA. We shall use the following lemma for diagonalizable matrices.

Lemma 1. A matrix A is diagonalizable if and only if its minimal polynomial µA factors
completely into distinct linear factors.

For an example where µM does not satisfy the condition of lemma 1, look at the following

matrix M =

 1 1 1
0 1 1
0 0 1

 and note that µM = (x− 1)3.

Suppose A ∈ Cn×n has finite order, thus there exists k ≥ 1 such that Ak = In. Thus for
Q(x) = xk− 1, we have Q(A) = 0. Thus µA | Q(x). Since Q(x) factors completely into distinct
linear factors, so does µA. Thus A is diagonalizable.

Exercise 2 (10 Points). Fix a natural number n. Given a list (c1, c2, . . . , c`) ∈ {1, 2, . . . , n}` of
pairwise distinct numbers, the corresponding cycle is the permutation π that satisfies π(ci) =
ci+1 for all 1 ≤ i ≤ ` − 1, π(c`) = c1, and π(j) = j if ∀i : j 6= ci . The number ` is called
the length of the cycle and the set {c1, c2, . . . , c`} is called its support. Two cycles are called
disjoint if their supports have empty intersection. Clearly disjoint cycles commute. Prove that
every π ∈ Sn can be written uniquely (up to a permutation of the factors) as a product of
disjoint cycles. This is called the cycle decomposition.

Solution 2. Let π ∈ Sn be any permutation. Pick a ∈ {1, 2, . . . , n} and consider the sequence
a, π(a), π2(a), . . . . This sequence must eventually repeat, so there exist k < ` such that πk(a) =
π`(a).Thus we have π`−k(a) = a. Let r be the smallest positive integer such that πr(a) = a.
Then, we have a cycle:

(a −→ π(a) −→ π2(a) −→ . . . −→ πr−1(a) −→ a).
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Now repeat the same process for every element b ∈ {1, 2, . . . , n} \ {a, π(a), π2(a), . . . , πr−1(a},
to get the cycle decomposition of π.

Exercise 3 (10 Points). Let π = c(1)c(2) . . . c(k) ∈ Sn be the cycle decomposition. Let `i denote
the length of the cycle c(i). If we sort the list of lengths (`1, `2, . . . , `k), then we obtain a partition
λ ` n that we call the cycle type of π. Prove that two permutations are in the same conjugacy
class iff they have the same cycle type.

Solution 3. Suppose σ and π are conjugates, i.e., there exists g ∈ Sn such that σ = gπg−1. To
prove that σ and π have same cycle type, it is enough to show that π(i) = j ⇐⇒ σ(g(i)) = g(j).
Suppose π(i) = j, then we have σ(g(i)) = gπg−1(g(i)) = g(π(i)) = g(j). The other direction
follows similarly.

Now suppose σ and π have the same cycle type. Write the cycle decomposition for each
permutation in such a way that the cycles are listed in non-decreasing order of their length
(including cycles of length 1). We then have (for example)

σ = (a1)(a2)(a3a4)(a5a6a7) . . . (a10 . . . an)

π = (b1)(b2)(b3b4)(b5b6b7) . . . (b10 . . . bn)

Define g ∈ Sn to be the permutation that takes ai to bi. Clearly g ∈ Sn, since each of 1, . . . , n
appears exactly once among the ai and once among the bi. Let aj, bj denote the “next” elements
to ai, bi in their respective cycles σ and π. Then we have

gσg−1(bi) = gσ(ai) = g(aj) = bj = π(bi).

Thus π = gσg−1.

Exercise 4 (10 Points). Let G be a finite group and let V and W be two G-representations
(in particular, V and W are finite dimensional). Then the direct sum V ⊕W of vector spaces
is a G-representation via

g(v, w) := (gv, gw).

Prove that the character χV⊕W satisfies χV⊕W (g) = χ
V (g) + χ

W (g).

Solution 4. Let n = dim(V ) and m = dim(W ). For g ∈ G, let g1 ∈ GLn and g2 ∈ GLm be
the corresponding matrices, i.e, ∀v ∈ V : g1v = gv and ∀w ∈ W : g2w = gw. Similarly, let
g′ ∈ GLn+m be corresponding matrix, i.e, ∀(v, w) ∈ V ⊕W : g′(v, w) = g(v, w). Now observe
that g′ = g1 ⊕ g2, i.e., we have

g′ =

[
g1 0
0 g2

]
.

Thus we have
χ
V⊕W (g) = Tr(g′) = Tr(g1) + Tr(g2) = χ

V (g) + χ
W (g).


