Exercise sheet 8 Solutions
Due: Tuesday, January 2, 2018

Total points : 40

Exercise 1 (10 Points). Prove that every complex matrix of finite order is diagonalizable.
Solution 1. The minimal polynomial μ_{A} of an $n \times n$ matrix A is the monic polynomial P of least degree such that $P(A)=0$. Any other polynomial Q with $Q(A)=0$ is a (polynomial) multiple of μ_{A}. We shall use the following lemma for diagonalizable matrices.

Lemma 1. A matrix A is diagonalizable if and only if its minimal polynomial μ_{A} factors completely into distinct linear factors.

For an example where μ_{M} does not satisfy the condition of lemma 1, look at the following matrix $M=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ and note that $\mu_{M}=(x-1)^{3}$.

Suppose $A \in \mathbb{C}^{n \times n}$ has finite order, thus there exists $k \geq 1$ such that $A^{k}=I_{n}$. Thus for $Q(x)=x^{k}-1$, we have $Q(A)=0$. Thus $\mu_{A} \mid Q(x)$. Since $Q(x)$ factors completely into distinct linear factors, so does μ_{A}. Thus A is diagonalizable.

Exercise 2 (10 Points). Fix a natural number n. Given a list $\left(c_{1}, c_{2}, \ldots, c_{\ell}\right) \in\{1,2, \ldots, n\}^{\ell}$ of pairwise distinct numbers, the corresponding cycle is the permutation π that satisfies $\pi\left(c_{i}\right)=$ c_{i+1} for all $1 \leq i \leq \ell-1, \pi\left(c_{\ell}\right)=c_{1}$, and $\pi(j)=j$ if $\forall i: j \neq c_{i}$. The number ℓ is called the length of the cycle and the set $\left\{c_{1}, c_{2}, \ldots, c_{\ell}\right\}$ is called its support. Two cycles are called disjoint if their supports have empty intersection. Clearly disjoint cycles commute. Prove that every $\pi \in \mathfrak{S}_{n}$ can be written uniquely (up to a permutation of the factors) as a product of disjoint cycles. This is called the cycle decomposition.

Solution 2. Let $\pi \in \mathfrak{S}_{n}$ be any permutation. Pick $a \in\{1,2, \ldots, n\}$ and consider the sequence $a, \pi(a), \pi^{2}(a), \ldots$. This sequence must eventually repeat, so there exist $k<\ell$ such that $\pi^{k}(a)=$ $\pi^{\ell}(a)$.Thus we have $\pi^{\ell-k}(a)=a$. Let r be the smallest positive integer such that $\pi^{r}(a)=a$. Then, we have a cycle:

$$
\left(a \longrightarrow \pi(a) \longrightarrow \pi^{2}(a) \longrightarrow \ldots \longrightarrow \pi^{r-1}(a) \longrightarrow a\right)
$$

Now repeat the same process for every element $b \in\{1,2, \ldots, n\} \backslash\left\{a, \pi(a), \pi^{2}(a), \ldots, \pi^{r-1}(a\}\right.$, to get the cycle decomposition of π.

Exercise 3 (10 Points). Let $\pi=c^{(1)} c^{(2)} \ldots c^{(k)} \in \mathfrak{S}_{n}$ be the cycle decomposition. Let ℓ_{i} denote the length of the cycle $c^{(i)}$. If we sort the list of lengths $\left(\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right)$, then we obtain a partition $\lambda \vdash n$ that we call the cycle type of π. Prove that two permutations are in the same conjugacy class iff they have the same cycle type.

Solution 3. Suppose σ and π are conjugates, i.e., there exists $g \in \mathfrak{S}_{n}$ such that $\sigma=g \pi g^{-1}$. To prove that σ and π have same cycle type, it is enough to show that $\pi(i)=j \Longleftrightarrow \sigma(g(i))=g(j)$. Suppose $\pi(i)=j$, then we have $\sigma(g(i))=g \pi g^{-1}(g(i))=g(\pi(i))=g(j)$. The other direction follows similarly.

Now suppose σ and π have the same cycle type. Write the cycle decomposition for each permutation in such a way that the cycles are listed in non-decreasing order of their length (including cycles of length 1). We then have (for example)

$$
\begin{aligned}
\sigma & =\left(a_{1}\right)\left(a_{2}\right)\left(a_{3} a_{4}\right)\left(a_{5} a_{6} a_{7}\right) \ldots\left(a_{10} \ldots a_{n}\right) \\
\pi & =\left(b_{1}\right)\left(b_{2}\right)\left(b_{3} b_{4}\right)\left(b_{5} b_{6} b_{7}\right) \ldots\left(b_{10} \ldots b_{n}\right)
\end{aligned}
$$

Define $g \in \mathfrak{S}_{n}$ to be the permutation that takes a_{i} to b_{i}. Clearly $g \in \mathfrak{S}_{n}$, since each of $1, \ldots, n$ appears exactly once among the a_{i} and once among the b_{i}. Let a_{j}, b_{j} denote the "next" elements to a_{i}, b_{i} in their respective cycles σ and π. Then we have

$$
g \sigma g^{-1}\left(b_{i}\right)=g \sigma\left(a_{i}\right)=g\left(a_{j}\right)=b_{j}=\pi\left(b_{i}\right) .
$$

Thus $\pi=g \sigma g^{-1}$.
Exercise 4 (10 Points). Let G be a finite group and let V and W be two G-representations (in particular, V and W are finite dimensional). Then the direct sum $V \oplus W$ of vector spaces is a G-representation via

$$
g(v, w):=(g v, g w)
$$

Prove that the character $\chi_{V \oplus W}$ satisfies $\chi_{V \oplus W}(g)=\chi_{V}(g)+\chi_{W}(g)$.
Solution 4. Let $n=\operatorname{dim}(V)$ and $m=\operatorname{dim}(W)$. For $g \in G$, let $g_{1} \in \mathrm{GL}_{n}$ and $g_{2} \in \mathrm{GL}_{m}$ be the corresponding matrices, i.e, $\forall v \in V: g_{1} v=g v$ and $\forall w \in W: g_{2} w=g w$. Similarly, let $g^{\prime} \in \mathrm{GL}_{n+m}$ be corresponding matrix, i.e, $\forall(v, w) \in V \oplus W: g^{\prime}(v, w)=g(v, w)$. Now observe that $g^{\prime}=g_{1} \oplus g_{2}$, i.e., we have

$$
g^{\prime}=\left[\begin{array}{cc}
g_{1} & 0 \\
0 & g_{2}
\end{array}\right]
$$

Thus we have

$$
\chi_{V \oplus W}(g)=\operatorname{Tr}\left(g^{\prime}\right)=\operatorname{Tr}\left(g_{1}\right)+\operatorname{Tr}\left(g_{2}\right)=\chi_{V}(g)+\chi_{W}(g) .
$$

