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Exercise 1 (10 Points). Prove that every complex matrix of finite order is diagonalizable.

Solution 1. The minimal polynomial g4 of an n x n matrix A is the monic polynomial P of
least degree such that P(A) = 0. Any other polynomial @ with Q(A) = 0 is a (polynomial)
multiple of pa. We shall use the following lemma for diagonalizable matrices.

Lemma 1. A matriz A is diagonalizable if and only if its minimal polynomial s factors
completely into distinct linear factors.

For an example where py; does not satisfy the condition of lemma [I} look at the following

1 11
matrix M = | 0 1 1 | and note that uy = (z — 1)3.
0 01

Suppose A € C™ ™ has finite order, thus there exists k& > 1 such that A* = I,,. Thus for
Q(x) = 2 — 1, we have Q(A) = 0. Thus p4 | Q(x). Since Q(x) factors completely into distinct
linear factors, so does 4. Thus A is diagonalizable.

Exercise 2 (10 Points). Fix a natural number n. Given a list (cy,¢a,...,¢) € {1,2,...,n}* of
pairwise distinct numbers, the corresponding cycle is the permutation 7 that satisfies m(¢;) =
Ciyp forall 1 < i <0 —1, n(c)) = 1, and 7w(j) = 7 if Vi : j # ¢; . The number ¢ is called
the length of the cycle and the set {cy,co,..., ¢} is called its support. Two cycles are called
disjoint if their supports have empty intersection. Clearly disjoint cycles commute. Prove that
every m € &,, can be written uniquely (up to a permutation of the factors) as a product of
disjoint cycles. This is called the cycle decomposition.

Solution 2. Let m € &,, be any permutation. Pick a € {1,2,...,n} and consider the sequence
a,m(a),7*(a),.... This sequence must eventually repeat, so there exist k < ¢ such that 7*(a) =
7¢(a). Thus we have 7~%(a) = a. Let r be the smallest positive integer such that 7"(a) = a.
Then, we have a cycle:

(a — 7(a) — m(a) — ... — 7" Ha) — a).
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Now repeat the same process for every element b € {1,2,...,n}\ {a,7(a),7*(a),..., 7" *(a},
to get the cycle decomposition of 7.

Exercise 3 (10 Points). Let 7 = cVe® .. ¢*) € &, be the cycle decomposition. Let £; denote
the length of the cycle ). If we sort the list of lengths (¢4, £, ..., ¢}), then we obtain a partition
A F n that we call the cycle type of w. Prove that two permutations are in the same conjugacy
class iff they have the same cycle type.

Solution 3. Suppose o and 7 are conjugates, i.e., there exists g € &,, such that o = grg~!. To
prove that o and 7 have same cycle type, it is enough to show that 7 (i) = j <= a(g(i)) = g9(j)-
Suppose 7(i) = j, then we have o(g(i)) = grg~'(g(i)) = g(7(i)) = g(j). The other direction
follows similarly.

Now suppose ¢ and 7 have the same cycle type. Write the cycle decomposition for each
permutation in such a way that the cycles are listed in non-decreasing order of their length
(including cycles of length 1). We then have (for example)

= (a1)(az2)(asaq)(asaear) ... (a...ay,)
m = (b1)(b2)(b3bs)(bsbsbr) ... (b1g...by)

Define g € G,, to be the permutation that takes a; to b;. Clearly g € G,,, since each of 1,...,n
appears exactly once among the a; and once among the b;. Let a;, b; denote the “next” elements
to a;, b; in their respective cycles ¢ and 7. Then we have

gog~ ' (b:) = go(ai) = gla;) = b; = m(by).
Thus 7 = gog™*.

Exercise 4 (10 Points). Let G be a finite group and let V and W be two G-representations
(in particular, V' and W are finite dimensional). Then the direct sum V @& W of vector spaces
is a G-representation via

g9(v, w) := (gv, gw).

Prove that the character Xy g satisfies Xyaw (9) = Xv(g9) + Xw(9)-

Solution 4. Let n = dim(V) and m = dim(W). For g € G, let g, € GL,, and ¢ € GL,, be
the corresponding matrices, i.e, Vo € V : g;v = gv and Yw € W : gow = gw. Similarly, let
g € GL,1.,, be corresponding matrix, i.e, V(v,w) € V& W : ¢'(v,w) = g(v,w). Now observe
that ¢’ = g1 ® ¢o, i.e., we have

r_ g1 0

I { 0 g 1

Xvew(g) = Tr(g") = Tr(g1) + Tr(g2) = Xv(g) + Xw(g)-

Thus we have



