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In the following lectures we want to study the representation theoretic multiplicities in the
coordinate rings of orbits. These give upper bounds for the multiplicities in the coordinate
rings of orbit closures. The main tool is the algebraic Peter-Weyl theorem.

1 The algebraic Peter-Weyl theorem

Let A be a finite dimensional complex vector space with a polynomial action of G = GLk. One
main example is A = Symn Ck. (For tensors G = GL3

k, A = ⊗3Ck)

Let Z ⊆ A be locally closed. One main example is a group orbit Z = Gv.

Recall (last semester, Chapter 15) that for a locally closed set Z ⊆ A we defined the coordinate
ring C[Z] as the ring of regular functions (i.e., locally defined by rational functions) on Z.
Therefore C[Z] ⊆ C[Z], because C[Z] is the ring of polynomial functions on Z, and polynomial
functions are regular.

For a point v ∈ A let stabG(v) ⊆ G denote its stabilizer (or its symmetry group):

stabG(v) := {g ∈ G | gv = v}.

The algebraic Peter-Weyl theorem implies that

multλ(C[Gv]) = dim({λ}stabG(v)).

Thus
multλ(C[Gv]) ≤ dim({λ}stabG(v)).

In our situations more is known by now about the relationship between both rings: One is a
so-called localization of the other1.

∗This is essentially exactly the same version as from January 29, 2018, with one very minor typo fixed.
1Bürgisser and Ikenmeyer, Fundamental invariants of orbit closures, Journal of Algebra Volume 477, 1 May

2017, Pages 390–434
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2 Characterization by the stabilizer

2.1 Theorem (2). Every connected reductive algebraic subgroup H ⊆ G is characterized (up
to group isomorphism) by its dimension data, which is the map λ 7→ dim{λ}H .

2.2 Definition. A point v ∈ A is characterized by its stabilizer (or alternatively characterized
by its symmetries) if

∀w ∈ A :
(

stabG(v) ⊆ stabG(w)⇒ w ∈ Cv
)
.

We will see that many points v of interest are characterized by their stabilizer. Since
multλ(C[Gv]) determines stabG(v) up to isomprohism, if in our specific situations a slightly
stronger version of Theorem 2.1 holds, then this means that multλ(C[Gv]) determines stabG(v)
and thus v.

If something comparable holds for orbit closures (in specific situations), then this would mean
that every lower bound can be proved using multiplicity obstructions.

CAVEAT: There are situations in which Gw 6⊆ Gv cannot be proved using multiplicity obstruc-
tions! But in all known cases v and w are not characterized by their stabilizer. For example,
let G be the trivial group and let v 6= w. Then both Gw and Gv are just a single point each.
But C[Gw] = C = C[Gv].

3 Main Examples

We now determine several stabilizers (or black-box them), prove that the points are character-
ized by the stabilizer and determine the multiplicities in C[Gv]. On the way we will discuss the
basics of the character theory of the symmetric group.

3.1 Product of homogeneous linear forms

3.1 Proposition. Let g ∈ GLk. If g(x1 · · ·xk) = x1 · · ·xk, then g is the product of a permuta-
tion matrix and a diagonal matrix with determinant 1 (the so-called SLk-torus TSLk). Notation:
TSLk oSk (this is called a semidirect product).

Proof. Clearly every product of a permutation matrix and a diagonal matrix with determinant
1 fixes x1 · · ·xk.

Let g(x1 · · ·xk) = `1 · · · `k. Let `i = αi,1x1 + · · ·+ αi,kxk.

For each xk′ : Set all other variables to 1. Then
∏
i `i(1, . . . , 1, xk′ , 1, . . . , 1) = xk′ . Thus exactly

one `i(1, . . . , 1, xk′ , 1, . . . , 1) is not just a constant, but an affine linear form. This affine linear
form is homogeneous, because the polynomial xk′ is homogeneous. We conclude that among

2Larsen and Pink, Determining representations from invariant dimensions, Inventiones Mathematicae,
102:377-389, 1990
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the `i at most one can have a nonzero coefficient for the variable xk′ . On the other hand each
`i must have at least one nonzero coefficient, so each `i = cixπ(i) for some permutation π and
nonzero constants ci. Clearly the constants satisfy

∏
i ci = 1.

3.2 Proposition. The polynomial x1 · · ·xk is characterized by its stabilizer.

Proof. The action of TSLk preserves the monomial structure (in other words, the support of the
coefficient vector of a polynomial is invariant under the action of TSLk). Thus if a polynomial w
is stabilized by TSLk , each monomial of w is stabilized independently. A monomial is stabilized
by TSLk iff each variable appears the same number of times. In degree k there is only one
monomial that has this property: x1 · · ·xk.

3.3 Proposition. For λ ` kd, multλ(C[GLkx1 · · ·xk])d = aλ(k, d).

Proof. We use the algebraic Peter-Weyl theorem. multλ(C[GLkx1 · · ·xk])d = dim{λ}TSLk
oSk =

dim({λ}TSLk )Sk . Recall the vector space of tableaux with the Grassmann-Plücker relations. A
basis of {λ} is given by semistandard tableaux with entries 1, . . . , k. Each basis vector gets
rescaled by the action of TSLk . The TSLk -invariants are the tableaux for which each number
appears equally often. Since λ ` kd, each number appears exactly d times. Taking the Sk-
invariants of this space of tableaux, its dimension is precisely the plethysm coefficient aλ(k, d).

CAVEAT: Let bλ(d, k) := multλ(C[GLk(x1 · · ·xk)]d). We just saw bλ(d, k) ≤ aλ(k, d). It might
be confusing that we also know bλ(d, k) ≤ aλ(d, k), because GLk(x1 · · ·xk) is a subvariety of
Symk Ck.

3.2 Power sum

3.4 Proposition. Let m ≥ 3. Let G = GLk and let v = xm1 + · · · + xmk . Then stabG(v) is
generated by the permutation matrices and the diagonal matrices with mth roots of unity on the
main diagonal. Notation: Zkm oSk

Proof. Clearly the listed matrices stabilize v. The rest of the proof uses partial derivatives. We
postpone it for a few minutes.

CAVEAT:
1

2

(
1 1
1 −1

)
(x2 + y2) =

1

2
((x+ y)2 + (x− y)2) = x2 + y2.

Let us therefore assume m ≥ 3.

3.5 Proposition. The power sum xm1 + · · ·+ xmk is characterized by its stabilizer.
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Proof. The action of Zkm preserves the monomial structure. Thus if a polynomial w is stabilized
by Zkm, each monomial is stabilized. A monomial is stabilized by Zkm iff each variable appears a
multiple of m times. In Symm Ck there are only k such monomials: xmi , 1 ≤ i ≤ k. Invariance
under Sk ensures that they all have the same coefficient. Thus w is a multiple of xm1 + · · · +
xmk .

The multiplicities C[GLk(xm1 + · · · + xmk )] can be determined, but it is a bit tricky and we
postpone it for a few lectures to Section 3.6. But the simplest case goes as follows.

3.6 Proposition. For λ ` km, multλC[GLk(xm1 + · · ·+ xmk )] ≥ aλ(k,m).

Proof. We use the algebraic Peter-Weyl theorem. multλ(C[GLk(xm1 + · · · + xmk )])d =

dim{λ}ZkmoSk = dim({λ}Zkm)Sk . A basis of {λ} is given by semistandard tableaux. Each
basis vector gets rescaled by the action of Zkm. The Zkm-invariants are the tableaux for which
each number appears a multiple of m times often.

In particular we obtain the tableaux in which each number appears exactly m times. Taking
the Sk-invariants of this space of tableaux, its dimension is precisely the plethysm coefficient
aλ(k,m).

Remark: One can show that multλ C[GLk(xm1 + · · ·+ xmk )] = aλ(k,m) for λ ` km.

Rest of the proof of Proposition 3.4. This is taken from 3.

Let ~x := (x1, . . . , xk). Let v := xm1 + · · ·+ xmk . Define the Hessian Hv(~x) as the k × k matrix
whose (i, j)-entry is

∂2

∂xi∂xj
v(~x).

The matrix Hv(~x) is diagonal with entry (i, i) being m(m− 1)xm−2
i . Thus

detHv(~x) =

k∏
i=1

m(m− 1)xm−2
i .

3.7 Claim. Hg−1v(~x) = gT ·Hv(g~x) · g. In particular det(Hg−1v(~x)) = det(g)2 det(Hv(g~x)).

Proof of claim. Let F := g−1v, i.e., F (~x) = v(g~x). We use the chain rule, 1 ≤ i ≤ k:

∂F

∂xi
(~x) =

k∑
q=1

gq,i ·
∂v

∂xq
(g~x).

3Chen, Wigderson, Kayal, Partial derivatives in arithmetic complexity and beyond, Found. Trends Theor.
Comput. Sci.. Chapter 2
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We use the chain rule again:

∂2F

∂xi · ∂xj
(~x) =

k∑
q=1

gq,i

(
k∑
p=1

gp,j ·
∂2v

∂xq∂xp
(g~x)

)

=
∑

1≤p,q≤k

gq,i ·
∂2v

∂xq∂xp
(g~x) · gp,j .

In matrix form: HF (~x) = gT ·Hv(g~x) · g.

Now let v = g−1v. Then also the Hessians coincide:

Hv(~x) = Hg−1v(~x) = gT ·Hv(g~x) · g.

In particular their determinants coincide:

det(Hv(~x)) = det(g)2 det(Hv(g~x)).

k∏
i=1

m(m− 1)xm−2
i = det(g)2︸ ︷︷ ︸

constant

k∏
i=1

 k∑
j=1

gi,jxj

m−2

.

Now we use the uniqueness of factorization: Each
∑k
j=1 gi,jxj is a scalar multiple of some xi′ .

Thus g has at most 1 nonzero entry in each column. Since g ∈ GLk, g has at exactly 1 nonzero
entry in each row and column. Clearly any permutation fixes v, so we can assume that g is
diagonal. The diagonal matrices that fix v are precisely those whose diagonal entries are mth
roots of unity.

3.3 Determinant

We now discuss the determinant and the permanent. We prove that both are characterized by
their stabilizer. One part of the proof requires some basic character theory, which we discuss
in Section 3.5.

The stabilizer

Let X = (xi,j) be an n× n variable matrix.

det(gXh) = det(g) det(h) det(X). Thus det(X) = det(gXh) with det(g) · det(h) = 1.

Moreover, det(X) = det(gXth) with det(g) · det(h) = 1.

These are the only symmetries, as was first shown by Frobenius in 18974. Hence
stabGLn2 (detn) = (GLn × GLn)/(C×) o Z2.

4Frobenius, Über die Darstellung der endlichen Gruppen durch lineare Substitutionen. Sitzungsberichte der
Königlich Preussischen Akademie der Wissenschaften zu Berlin, pages 994–1015, 1897., §7, Satz I
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Characterization by the stabilizer

We want to see that detn is characterized by its stabilizer. We need the following preliminary
lemma.

3.8 Lemma. From the exercises we know that every irreducible GLn-representation {λ} is
irreducible as an SLn-representation. We have that {λ} is the trivial SLn-representation iff
λ = n× d for some d.

Proof. In order for {λ} to be the trivial SLn-representation, we need {λ} to be 1-dimensional.
Recall that dim{λ} equals the number of semistandard tableaux of shape λ with entries 1, . . . , n.
Thus the only 1-dimensional GLn-representations {λ} satisfy λ = n×d. Indeed, these correspond
to the representation gv = det(g)d.v. In particular these are trivial with respect to the SLn-
action.

3.9 Theorem. detn is characterized by its stabilizer.

Proof. ⊗n(Cn ⊗ Cn) decomposes w.r.t. the GLn × GLn-action (Schur-Weyl duality) as

⊗n(Cn ⊗ Cn) =
⊕
λ,µ`n

{λ} ⊗ {µ} ⊗ [λ]⊗ [µ].

Thus Symn(Cn ⊗ Cn) decomposes as

Symn(Cn ⊗ Cn) =
⊕
λ,µ`n

{λ} ⊗ {µ} ⊗ ([λ]⊗ [µ])Sn .

Now we use ([λ]⊗ [µ])Sn =

{
C iff λ = µ

0 otherwise
(which we prove below using character theory):

Symn(Cn ⊗ Cn) =
⊕
λ`n

{λ} ⊗ {λ}.

Taking SLn × SLn-invariants (Lemma 3.8):

(Symn(Cn ⊗ Cn))SLn×SLn = {1n} ⊗ {1n},

which is 1-dimensional.

3.4 Permanent

The stabilizer

Let X = (xi,j) be an n× n variable matrix.

per(gXh) = per(X) if g and h are permutation matrices.
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Moreover, per(gXh) = per(X) if g and h are diagonal matrices with det(gh) = 1.

Moreover, per(X) = per(Xt).

These are the only symmetries5. Hence stabGLn2 (pern) = (Qn × Qn)/C× o Z2, where Qn =
Tn oSn.

Characterization by the stabilizer

Analogously to detn we see that pern is characterized by its stabilizer.

3.10 Theorem. pern is characterized by its stabilizer.

Proof. ⊗n(Cn ⊗ Cn) decomposes w.r.t. the GLn × GLn-action (Schur-Weyl duality) as

⊗n(Cn ⊗ Cn) =
⊕
λ,µ`n

{λ} ⊗ {µ} ⊗ [λ]⊗ [µ].

Thus Symn(Cn ⊗ Cn) decomposes as

Symn(Cn ⊗ Cn) =
⊕
λ,µ`n

{λ} ⊗ {µ} ⊗ ([λ]⊗ [µ])Sn .

Now we use ([λ]⊗ [µ])Sn =

{
C iff λ = µ

0 otherwise
(which we prove below using character theory):

Symn(Cn ⊗ Cn) =
⊕
λ`n

{λ} ⊗ {λ}.

For λ ` n Gay’s theorem states that {λ}Tn = [λ], but this can easily be generalized: Let
TSLn := Tn ∩ SLn. Then for λ ` n we have {λ}TSLn = [λ].

Thus taking TSLn × TSLn -invariants we obtain:

(Symn(Cn ⊗ Cn))TSLn×TSLn =
⊕
λ`n

[λ]⊗ [λ].

Taking Sn ×Sn-invariants yields⊕
λ`n

[λ]Sn ⊗ [λ]Sn = [n]⊗ [n],

which is 1-dimensional.

5Marcus and May, The permanent function. Canad. J. Math., 14:177–189, 1962.
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3.5 Dual representations and character theory

In this section we discuss some basic character theory to prove the following statement, which
is a missing part in our arguments in Sections 3.3 and 3.4.

3.11 Proposition. dim([λ]⊗ [µ])Sn = 1 iff λ = µ (0 otherwise).

Remark: Using what we have learned last semester, with obstruction designs and explicit
highest weight vectors it is easy to see that dim([λ] ⊗ [λ])Sn ≥ 1. For the corresponding
hypergraph let the layer 1 hyperedges agree with the layer 2 hyperedges. This hypergraph
decomposes into disjoint hypergraphs. The semigroup property implies that we only need to
verify ([1n] ⊗ [1n])Sn > 0. This can be verified directly by studying the Sn-action on the
column tableau pair.

The complete proof of Prop. 3.11 can be easily seen using classical ideas from representation
theory that we want to introduce now.

3.12 Definition. Let G be a group, V be a finite dimensional vector space, and let % : G →
GL(V ) be a representation. Let V ∗ be the dual space to V , i.e., the space of homogeneous linear
forms on V . Then V ∗ is a representation via (gf)(x) := f(g−1x), which is called the dual
representation or the contragredient representation.

3.13 Lemma. Let V be a G-representation. V is irreducible iff V ∗ is irreducible.

Proof. Let V ∗ be irreducible. Let W ⊆ V by a G-subrepresentation, in particular a linear
subspace. Then the vanishing ideal I(W )1 in degree 1 is called the annihilator W⊥, which is a
G-subrepresentation of V ∗:

W⊥ := {f ∈ V ∗ : f(W ) = {0}},

Since V ∗ is irreducible, either W⊥ = 0 or W⊥ = V ∗. If W⊥ = V ∗, then all linear polynomials
vanish on W . Since W is a linear subspace, W = 0. If W⊥ = 0, then no linear polynomial
vanishes on W . Since W is a linear subspace, V = W . In both cases W is a trivial G-
subrepresentation of V . Thus V is irreducible.

We finish the argument by showing that V ∗∗ = V are isomorphic G-representations.

V ∗∗ = {Φ : V ∗ → C | Φ linear}

The canonical isomorphism Ξ : V → V ∗∗ is known from linear algebra as follows:

(Ξ(v))(ϕ) := ϕ(v), v ∈ V, ϕ ∈ V ∗. (†)

But Ξ is G-equivariant:

(Ξ(gv))(ϕ)
(†)
= ϕ(gv) = (g−1ϕ)(g)

(†)
= (Ξ(v))(g−1ϕ) = (g(Ξ(v)))(ϕ),

i.e., Ξ(gv) = g(Ξ(v)).
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If V is irreducible of type λ, then we denote by λ∗ the type of V ∗.

The following two propositions prove Proposition 3.11.

3.14 Proposition (A). Let G be a linearly reductive group and W be a G-representation and
let {λ} denote the irreducible G-representation of type λ. Then

multλ(W ) = dim(({λ∗} ⊗W )G).

In particular dim(({λ}∗ ⊗ {λ})G) = 1 and for λ 6= µ we have dim(({µ}∗ ⊗ {λ})G) = 0.

We prove this in Section (A).

3.15 Proposition (B). [λ] and [λ]∗ are isomorphic Specht modules.

We prove this in Section (B).

CAVEAT: Proposition 3.15 holds for the symmetric group, but it is false for example for GLn,
Tn, or the cyclic group of order > 2.

Proof of Proposition 3.11.

dim([λ]⊗ [µ])Sn
(B)
= dim([λ∗]⊗ [µ])Sn

(A)
= mult[λ]([µ]) =

{
1 if λ = µ

0 otherwise.

(A) “Contraction” of representations: Proof of Proposition 3.14

3.16 Lemma. Given two G-representations V and W , Hom(V,W ) = V ∗ ⊗W is a G × G-
representation via

((g′, g)ϕ)(v) := g′(ϕ(g−1v)).

Proof. We prove ((g′h′, gh))ϕ = (g′, g)((h′, h)ϕ).

((g′h′, gh)ϕ)(v) = (g′h′)ϕ((gh)−1v) = g′(h′ϕ(h−1(g−1v))) = g((h′, h)ϕ︸ ︷︷ ︸
=:Ψ

)(g−1v) = ((g′, g)Ψ)(v)

3.17 Lemma. Embed G ↪→ G×G, g 7→ (g, g). In this way Hom(V,W ) is a G-representation.
Its invariant space is the space of equivariant linear maps: Hom(V,W )G = HomG(V,W ).

Proof. Recall that ϕ ∈ HomG(V,W ) iff g(ϕ(v)) = ϕ(gv) for all g ∈ G.

If ϕ ∈ Hom(V,W ) is G-invariant, then ϕ(v) = g(ϕ(g−1v)) and thus

g−1(ϕ(v)) = (g−1g)ϕ(g−1v) = ϕ(g−1v),

hence ϕ is G-equivariant. The proof works analogously in the other direction.
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Proposition 3.14 is now readily proved:

Schur’s lemma says that
dim(HomG({λ},W )) = multλ(W ).

We just saw that

HomG({λ},W ) = (Hom({λ},W ))G = ({λ}∗ ⊗W )G.

Therefore
multλ(W ) = dim({λ}∗ ⊗W )G.

�

(B) Some character theory of finite groups: The Specht modules are self-dual
(Prop. 3.15)

We will use character theory to prove that the Specht modules [λ] and [λ]∗ are isomorphic.
Character theory is also currently the most efficient tool to compute Kronecker coefficients.

3.18 Definition. Let % : G→ GL(V ) be a representation. Then the map

χ% : G→ C, χ%(g) = tr(%(g))

is called the character of %.

3.19 Observation. The character is a function that is constant on conjugacy classes. We call
these functions class functions.

Proof. χ%(h
−1gh) = tr(%(h−1gh)) = tr(%(h−1)%(g)%(h))) = tr(%(h)%(h−1)%(g))) =

tr(%(hh−1)%(g))) = tr(%(g)) = χ%(g).

3.20 Proposition. Isomorphic representations have coinciding characters. (We will prove the
other direction later)

Proof. Let (V, %V ) and (W,%W ) be isomorphic representations with isomorphism γ : V → W .
As a product of matrices this means γ%V (g)v = %W (g)γv for all v ∈ V , thus γ%V (g) = %W (g)γ.
In other words

γ%V (g)γ−1 = %W (g).

Thus the traces of %V (g) and %W (g) coincide.

3.21 Example. We calculate the characters of S3.

id (12) (123)
[(3)] 1 1 1

[(13)] 1 −1 1
[(2, 1)] ? ? ?
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Let a := 1 2
3

, b := 1 3
2

.

id

(
a
b

)
=

(
a
b

)
,

thus

%(2,1)(id) =

(
1 0
0 1

)
.

Therefore χ(2,1)(id) = tr(%(2,1)(id)) = 2.

(12)

(
a
b

)
=

(
a− b
−b

)
,

thus

%(2,1)((12)) =

(
1 0
−1 −1

)
.

Therefore χ(2,1)((12)) = 0.

(123)

(
a
b

)
=

(
−b
a− b

)
,

thus

%(2,1)((12)) =

(
0 1
−1 −1

)
.

Therefore χ(2,1)((123)) = −1.

id (12) (123)
[(3)] 1 1 1

[(13)] 1 −1 1
[(2, 1)] 2 0 −1

This is called a character table.

From this example we see that in the case of the symmetric group the characters are integers.

3.22 Lemma. %∗(g) = %(g)−t (i.e., the representation matrix of the dual is the transpose
inverse matrix).

Proof. Instead of %(g) : V → V we start out more generally and let D : V → W be a linear
map, not necessarily an isomorphism. The transpose Dt : W ∗ → V ∗ is defined via

f 7→ f ◦D

or, in other words
(Dt(f))(x) = f(D(x)) for all x ∈ V .

If D is invertible, we can analyze D−1 instead of D:

(D−t(f))(x) = f(D−1(x)).

If D = %(g), then the right-hand side becomes f(g−1x), which means that the left-hand side is
equal to (gf)(x).
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3.23 Theorem. Let g ∈ G have finite order (e.g., if G is finite). The character of the dual
representation is the complex conjugate: χ∗(g) = χ(g).

Proof. Since %(g) is of finite order, %(g) is diagonalizable. Let d = A−1%(g)A be diagonal. Then
d−1 = A−1%(g)−1A (invert all three and switch the order). Clearly χ(g) := tr(%(g)) = tr(d) and

χ∗(g)
Lemma 3.22

= tr(%(g)−t) = tr(%(g)−1) = tr(d−1). Since d has finite order, the entries on the
diagonal of d are roots of unity. Thus d−1 = d. Summing up the trace gives: χ∗(g) = χ(g).

Remark: We know from our explicit description of the Specht modules (straightening algorithm)
that the entries of the representation matrices %(g), g ∈ Sn, are all real-valued. Thus the
characters of the symmetric group are real-valued. Thus [λ]∗ = [λ].

3.24 Corollary. If g has finite order, then χ(g−1) = χ(g).

Proof.

χ(g−1) = tr(%(g−1)) = tr(%(g)−1) = tr(%(g)−t)
Lem. 3.22

= tr %∗(g) = χ∗(g)
Thm. 3.23

= χ(g).

Characters characterize the representation

Let G be finite.

For a linear map ϕ : U → V define a G-morphism ϕ̃ : U → V via

ϕ̃(u) =
1

|G|
∑
g∈G

gϕ(g−1u) =
1

|G|
∑
g∈G

%V (g)ϕ(%U (g−1)u).

In matrix presentation:

ϕ̃ =
1

|G|
∑
g∈G

%V (g) · ϕ · %U (g−1).

3.25 Corollary. Let U, V be irreducible G-representations and ϕ : U → V a linear map.

1. If U 6' V , then ϕ̃ = 0.

2. If U = V , then ϕ̃ = trϕ
n idU .

Proof. The first claim is clear by Schur’s lemma, because ϕ̃ is a G-morphism. Furthermore,
also by Schur’s lemma, if U = V , then ϕ̃ = αidU .

nα = tr(αidU ) = tr(ϕ̃) =
1

|G|
∑
g∈G

tr(%U (g) · ϕ · %U (g−1))︸ ︷︷ ︸
=trϕ

= tr(ϕ).

Thus α = tr(ϕ)
n .
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3.26 Corollary. Let U, V be irreducible G-representations and R(g) := %U (g), S(g) := %V (g)
are the representation matrices.

1. If U 6' V , then ∀i, j, k, l : 1
|G|
∑
g∈G S(g)ijR(g−1)kl = 0

2. If U = V , dimU = n, then ∀i, j, k, l : 1
|G|
∑
g∈GR(g)ijR(g−1)kl = 1

nδilδjk.

Proof. Let Ejk be the zero matrix with a single 1 in row j, column k. For matrices S,R we
have

(S · Ejk ·R)il =
∑
a,b

Sia(Ejk)abRbl = SijRkl. (†)

We want to apply Cor. 3.25 to ϕ = Ejk:

ϕ̃il =

 1

|G|
∑
g∈G

S(g)EjkR(g−1)


il

=
1

|G|
∑
g∈G

(
S(g)EjkR(g−1)

)
il

(†)
=

1

|G|
∑
g∈G

S(g)ijR(g−1)kl.

If U 6' V , then Cor. 3.25 implies ϕ̃il = 0, which proves the first claim. If U = V , then Cor. 3.25
implies ϕ̃il =

trEjk
n δil = 1

nδjkδil, which proves the second claim.

3.27 Definition. Let ϕ,ψ be functions G→ C. We define

〈ϕ,ψ〉 :=
1

|G|
∑
g∈G

ϕ(g)ψ(g).

3.28 Remark. 〈., .〉 is an inner product on the complex vector space of functions G→ C. An
orthonormal system is a set {χ1, . . . , χk : G→ C} such that 〈χi, χj〉 = δij. Every orthonormal
system is linearly independent.

3.29 Theorem (Fundamental theorem (orthogonality relations)). Let U and V be irreducible
G-representations. Then

〈χU , χV 〉 =

{
1 if U ' V
0 otherwise

Proof.

〈χU , χV 〉 =
1

|G|
∑
g∈G

χU (g)χV (g)
Cor. 3.24

=
1

|G|
∑
g∈G

χU (g)χV (g−1)

=
1

|G|
∑
g∈G

(
∑
i

Sii(g))(
∑
j

Rjj(g
−1)) =

∑
i,j

1

|G|
∑
g∈G

Sii(g)Rjj(g
−1)︸ ︷︷ ︸

cp. Cor. 3.26

.

If U 6' V , this is 0 by Corollary 3.26.
If U = V , then Corollary 3.26 gives

〈χU , χV 〉 =
∑
i,j

1

n
δijδij =

n∑
i=1

1

n
= 1.
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3.30 Theorem. G-representations are isomorphic iff their characters coincide.

Proof. One direction is known from Prop. 3.20. For the other direction, let U =
⊕

λ cλ{λ} be a
decomposition into irreducible representations, and analogously for V =

⊕
λ dλ{λ}. Then χU =∑

λ cλχλ and χV =
∑
λ dλχλ for some natural numbers cλ, dλ. Since {χλ} is an orthonormal

system, it is linearly independent. Therefore cλ = dλ for all λ. We conclude U ' V .

Proof of Prop. 3.15. Let V = [λ] with character χV . Since V is a Specht module, χV (g) ∈ R.

Thus χV ∗(g)
Thm. 3.23

= χV (g) = χV (g). Hence χV = χV ∗ . Using Theorem 3.30 we conclude that
V ' V ∗.

3.6 Power sum revisited

Since we got a bit more familiar with invariant spaces, we now determine the multiplicities in
the coordinate rings of the power sum and the unit tensor. We start with the simpler case of
the power sum.

We use the notation in the STOC 2011 paper by Bürgisser and Ikenmeyer, so m is now the num-
ber of variables and D is the degree. The formulas in this and the next section are unpublished
calculations by Ikenmeyer and Panova. Parts also appear in a preprint of Nishiyama.

The power sum is the polynomial xD1 + · · ·+ xDm. Let H := ZmD oSm denote its stabilizer. Let
λ ` Dd.

If % `m d is a partition, then the frequency notation κ ∈ Nm is defined via

κi = |{j | %j = i}|.

E.g., the frequency notation of % = (3, 3, 2, 0) is (0, 1, 2, 0). We observe that |%| =
∑
i iκi.

We group Sm acts on Nm by permuting the positions. Note that under this action we have
stab % = Sκ1

×Sκ2
× · · · ×Sκm .

3.31 Theorem. dim{λ}H =
∑
%`md

∑
µ1,µ2,...,µd

µi`κiDi
cλµ1,µ2,...,µd

∏d
i=1 aµi(κi, iD), where κ is the

frequency notation of %, and cλµ1,µ2,...,µd is the multi-Littlewood-Richardson coefficient that

denotes the multiplicity of {λ} in the tensor product {µ1} ⊗ . . .⊗ {µd}.

Proof.

{λ}H = ({λ}Z
m
D )Sm =

⊕
γ∈Nm
|γ|=d

[λ]Gγ


Sm

where for γ ∈ Nm, |γ| = d, Gγ ⊆ SdD is defined as the Young subgroup Sγ1D × · · · ×SγmD.
The last equality can be seen using the tableau bases on both sides.
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For a partition % `m d let Sm% ⊆ Nm denote the orbit of %. Note that % is the only partition in
its orbit, while the other lists are not in the correct order. Grouping the RHS in the previous
equation we obtain

⊕
%`md

 ⊕
γ∈Sm%

[λ]Gγ

Sm

,

so we can study each % independently.

Let stab % ≤ Sm denote the stabilizer of %.

3.32 Claim. dim
(⊕

γ∈Sm%[λ]Gγ
)Sm

= dim
(
[λ]G%

)stab %
.

Proof. We construct an isomorphism of vector spaces.

Let W % := [λ]G% and W% :=
⊕

γ∈Sm%W
γ . Let π1, . . . , πr be a system of representatives of

left cosets for stab % ≤ Sm with π1 = id, i.e., Sm = π1 stab % ∪̇ · · · ∪̇ πr stab % and we have
Sm% = {π1%, . . . , πr%}. Therefore we have the decomposition

W% =

r⊕
j=1

πjW
%.

Let p : W% � W % be the projection according to this decomposition. We claim that the
restriction

p : (W%)
Sm → (W %)

stab %

is an isomorphism of vector spaces. This then finishes the proof. We verify well-definedness,
injectivity, and surjectivity of p.

Well-definedness: The spaces π1W
%, . . . , πrW

% are permuted by Sm. Every σ ∈ stab % fixes

W %, thus σv1 = v1 if v1 ∈W %. Thus the map v =
∑r
j=1 vj

p7→ v1 maps W% to (W %)stab %.

Injectivity: If v ∈ (W%)
Sm , then v = πv =

∑
j πvj . Therefore vj = πjv1. If p(v) = 0, then

v1 = 0, thus all vj = 0, which proves injectivity.

Surjectivity: Let v1 ∈ (W %)stab %. Set vj := πjv1 and put v :=
∑
j vj . Clearly p(v) = v1. It

remains to verify that v is Sm-invariant.

v =

r∑
j=1

πjv1 =

r∑
j=1

1
| stab %|

∑
τ∈stab %

πjτv1 = 1
| stab %|

∑
π∈Sm

πv1,

which is Sm-invariant.

We are left with determining dim
(
[λ]G%

)stab %
.

dim
(
[λ]G%

)stab %
= dim HWVλ({λ} ⊗ ([λ]G%)stab %) = dim HWVλ((⊗dDV )G%ostab %)

15



(⊗dDV )G%ostab % = (SymD%1 V ⊗ · · · ⊗ SymD%m V )stab %

= (

κ1⊗
SymD V ⊗

κ2⊗
Sym2D V ⊗ · · · ⊗

κd⊗
SymdD V )stab %

= Symκ1 SymD V︸ ︷︷ ︸
=
⊕
µ1{µ1}⊕aµ1 (κ1,D)

⊗Symκ2 Sym2D V ⊗ · · · ⊗ Symκd SymdD V︸ ︷︷ ︸
=
⊕
µd
{µd}

⊕a
µd

(κd,dD)

(†)

where κ is the frequency notation of %. The multiplicity of {µi} in Symκi SymiD V is aµi(κi, iD).
Let cλµ1,µ2,...,µd denote the multiplicity of {λ} in the tensor product {µ1} ⊗ . . . ⊗ {µd}. Using

distributivity we obtain that the multiplicity of {λ} in the representation (†) equals

∑
µ1,µ2,...,µd

µi`κiDi

cλµ1,µ2,...,µd

d∏
i=1

aµi(κi, iD)

We conclude

dim{λ}H =
∑
%`md

∑
µ1,µ2,...,µd

µi`κiDi

cλµ1,µ2,...,µd

d∏
i=1

aµi(κi, iD).

3.7 Unit tensor

The unit tensor
∑m
i=1 ei⊗ ei⊗ ei has properties similar to the power sum. Its stabilizer in GL3

m

is H := Dm oSm, where

Dm := {(diag(α
(1)
1 , . . . , α(1)

m ), . . . ,diag(α
(3)
1 , . . . , α(3)

m )) | ∀i : α
(1)
i α

(2)
i α

(3)
i = 1}.

On the homework sheet we saw that the unit tensor is characterized by its stabilizer. Using
the algebraic Peter-Weyl theorem we determine the multiplicities in the coordinate ring of the
orbit of the unit tensor.

3.33 Theorem. dim{λ, λ′, λ′′}H =
∑
%`md

∑
β,β′,β′′ jβ,%(λ)jβ′,%(λ

′)jβ′′,%(λ
′′)
(∏m

i=1 k(βi, β′i, β′′i)
)
,

where for κ being the frequency notation of %

• the sum for β is over all lists of partitions such that βi ` κi and analogously for β′ and
β′′, and

• jβ,%(λ) :=
∑

ν1,...,νm

νi`iκi

cλν1,...,νm

(∏m
i=1 aνi(β

i, i)
)
,

Proof. {λ, λ′, λ′′} = {λ} ⊗ {λ′} ⊗ {λ′′}.

{λ, λ′, λ′′} has a basis given by triples of tableaux and Dm rescales basis vectors. Thus a vector
is invariant if all basis vectors in its support are invariant.
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Dm contains the subgroup

{(diag(α, 1, 1, . . . , 1),diag(α−1, 1, 1, . . . , 1), id)}

and all other such subgroups where α and α−1 are both on position i on two different diagonals.
A basis vector is invariant under these groups if all three tableaux have the same content. Since
Dm is generated by these groups, this precisely characterizes the invariants: {λ, λ′, λ′′}Dm has
as a basis those triples of tableaux in which all three tableaux share the same content γ ∈ Nm,
|γ| = d:

{λ, λ′, λ′′}Dm =
⊕
γ∈Nm,
|γ|=d

{λ}γ ⊗ {λ′}γ ⊗ {λ′′}γ ,

where {λ}τ denotes the vector space of tableaux of shape λ and content τ .⊕
γ∈Smτ{λ}

γ is an Sm-representation. As seen in the proof for the power sum, we group
together with respect to the content:

({λ, λ′, λ′′}Dm)Sm =
⊕
%`md

(
⊕

γ∈Sm%

{λ}γ ⊗ {λ′}γ ⊗ {λ′′}γ)Sm

Completely analogously to the proof for the power sum, we can take stab %-invariants instead
of Sm-invariants:

dim(
⊕

γ∈Sm%

{λ}γ ⊗ {λ′}γ ⊗ {λ′′}γ)Sm = dim({λ}% ⊗ {λ′}% ⊗ {λ′′}%)stab %

We analyze the action of stab % separately on each of the three tableau spaces, i.e., we decom-
pose {λ}, {λ′}, and {λ′′} as stab %-representations. Once this is done, Kronecker coefficients
determine the stab %-invariant space dimension.

As seen in the proof for the power sum:

3.34 Claim.

{λ}%
stab %-repr
'

⊕
β1,...,βm

βi`κi

∑
ν1,...,νm

νi`iκi

cλν1,...,νm

(
m∏
i=1

aνi(β
i, i)

)
︸ ︷︷ ︸

=:jβ,%(λ)

[β1]⊗ · · · ⊗ [βm],

where κ is the frequency notation of %.

Proof. Note that {λ}m×k =
⊕

µ`m aλ(µ, k)[µ], as a generalization of Gay’s theorem (this can
be taken as the definition of the generalized plethysm coefficient).

We first prove (∗):
⊗i

Symj V = (
⊗ij

V )S
i
j =

⊕
ν`ij{ν} ⊗ [ν]S

i
j =

⊕
ν`ij{ν} ⊗ {ν}i×j =⊕

ν`ij,ϕ`j aν(ϕ, j){ν} ⊗ [ϕ], where for the last equality we use the generalized Gay’s theorem.

Now we can calculate:
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⊕
λ`d

{λ} ⊗ {λ}% =
⊕
λ`d

{λ} ⊗ [λ]G% = (⊗dV )G% = Sym%1 V ⊗ · · · ⊗ Sym%m V

=
⊗κ1 Sym1 V ⊗ · · · ⊗

⊗κd Symd V

(∗)
=

⊕
ν1`1κ1
β`κ1

aν1(β1, 1){ν1} ⊗ [β1] ⊗ · · · ⊗
⊕

νd`dκd
β`κd

aνd(βd, d){νd} ⊗ [βd]

=
⊕
ν,β

(

m∏
i=1

aνi(β
i, i))({ν1} ⊗ {νm})⊗ [β1]⊗ · · · ⊗ [βm].

Taking HWVs of weight λ on both sides we obtain

{λ}% =
⊕
ν,β

cλν1,...,νm(

m∏
i=1

aνi(β
i, i))[β1]⊗ · · · ⊗ [βm].

Since the dimension of the Sκi -invariant space of [βi]⊗ [β′i]⊗ [β′′i] is given by the Kronecker
coefficient k(βi, β′i, β′′i), we obtain:

dim({λ}% ⊗ {λ′}% ⊗ {λ′′}%)stab % =
∑

β,β′,β′′

jβ,%(λ)jβ′,%(λ
′)jβ′′,%(λ

′′)

(
m∏
i=1

k(βi, β′i, β′′i)

)
,

where the sum for β is over all lists of partitions such that βi ` κi and analogously for β′ and
β′′.

We can now obtain a second proof for the fact that the hook triple gives an equation for proving
lower bounds on the border rank:

3.35 Corollary. Let λ = λ′ = λ′′ be the hook partition with 3k + 1 boxes and 2k + 1 rows.
Then mult(λ,λ′,λ′′)(GL

3
3kE3k) = 0, where E3k is the 3k-th unit tensor.

Proof. We use the formula in Theorem 3.33. Since it has no signs, we can assume (for the
sake of contradiction) that the formula yields a is positive result and derive conditions on the
partitions that are involved in positive summands.

We use a few standard facts about Littlewood-Richardson coefficients, plethysm coefficients,
and Kronecker coefficients, each marked with a †.

First observation: ν1 = β1, because of the plethysm aν1(β1, 1) = multν1(Sβ
1

(Sym1 V )︸ ︷︷ ︸
={β1}

).

A multi-LR-coefficients can only be positive if all small partitions are contained in the large
partition, i.e., the small Young diagrams are subsets of the large Young diagram (†). In our
case, all large partitions are hooks, so all νi are hooks. Thus also β1, β′1, β′′1 are hooks.
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Let d be the number of boxes. For a hook ν1 define the inner leg length as `(ν1) − 1. For
hook triples with inner leg lengths a1, a2, a3, Kronecker positivity requires (†, see e.g. Mercedes
Rosas’ PhD thesis):

2d− a1 − a2 − a3 − 2 ≥ 0.

Thus not all three a1, a2, a3 can be large. Indeed, let a = min{a1, a2, a3}, then 2d− 3a− 2 ≥ 0
and thus a ≤ 2d−2

3 . In particular this holds for k(ν1, ν′1, ν′′1) = k(β1, β′1, β′′1) > 0. W.l.o.g. ν1

is the shortest of ν1, ν′1, ν′′1. Then

`(ν1)− 1 ≤ 2|ν1| − 2

3
=

2

3
|ν1| − 2

3

and thus

`(ν1) ≤ 2

3
|ν1|+ 1

3
.

All partitions appearing in
⊗a

Symb V have at most a rows, as the basis of HWVs is given by
semistandard tableaux with content (b, b, . . . , b). Therefore the positive plethysm coefficients in
the formula imply

`(νi) ≤ |βi| = κi =
νi

i

Adding up the lengths we obtain

`(ν1) + · · ·+ `(ν`) ≤ 2

3
|ν1|+ 1

3
+

1

2
(|ν2|+ · · ·+ |ν`|︸ ︷︷ ︸

=3k+1−|ν1|

)

=
2

3
|ν1|+ 1

3
+

3

2
k +

1

2
− 1

2
|ν1| = 3

2
k +

1

6
|ν1|+ 5

6

We now use that for a positive multi-LRC the lengths of the small partitions add up to at least
the length of the large partition (†):

`(ν1) + · · ·+ `(ν`) ≥ `(λ) = 2k + 1.

Therefore

3

2
k +

5

6
+

1

6
|ν1| ≥ 2k + 1⇔ −1

2
k − 1

6
+

1

6
|ν1| ≥ 0⇔ |ν1| ≥ 3k + 1.

Since |ν1| = κ1, this means that %1 = (13k+1), but the sum is only over %1 with at most 3k
rows.
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