Zeros of structured polynomials over the reals and p-adics

Peter Bürgisser

WACT 2023
Warwick University, 28 March 2023

Real zeros of sparse polynomials

- Study number $N(f)$ of positive real zeros of univariate polynomial f.
- If f has at most t monomial terms, call it t-sparse.
- Descartes rule (sharp): $N(f) \leq t-1$ if f is t-sparse.
- Clearly,

$$
N\left(f_{1} \cdots f_{k}\right) \leq k(t-1) \text { if } f_{1}, \ldots, f_{k} \text { are } t \text {-sparse. }
$$

- How about
- Expanding and Descartes give $N\left(f_{1} \cdots f_{k}-1\right) \leq t^{k}$ - Is this bound pessimistic?

Real zeros of sparse polynomials

- Study number $N(f)$ of positive real zeros of univariate polynomial f.
- If f has at most t monomial terms, call it t-sparse.
- Descartes rule (sharp): $N(f) \leq t-1$ if f is t-sparse.
- Clearly,

$$
N\left(f_{1} \cdots f_{k}\right) \leq k(t-1) \text { if } f_{1}, \ldots, f_{k} \text { are } t \text {-sparse. }
$$

- How about

$$
f_{1} \cdots f_{k}-1 \quad ?
$$

- Expanding and Descartes give $N\left(f_{1} \cdots f_{k}-1\right) \leq t^{k}$.
- Is this bound pessimistic?

Polynomials given by $\Sigma \Pi \Sigma \Pi$-circuits

- For a support $S \subseteq \mathbb{N}$ with $|S| \leq t$ define

$$
f_{S}(X):=\sum_{s \in S} u_{s} X^{s}, \quad \text { where } u_{s} \in \mathbb{R}
$$

- Fix a system of supports $S_{i j} \subseteq \mathbb{N}$, where $1 \leq i \leq m$ and $1 \leq j \leq k_{i}$. We assume $\left|S_{i j}\right| \leq t$ and $k_{i} \leq k$.
- Consider the sum of products of sparse polynomials

$$
F(X):=\sum_{i=1}^{m} f_{i 1}(X) \cdot \ldots \cdot f_{i k_{i}}(X) X^{d_{i}}
$$

where $f_{i j}:=f_{S_{i j}}$ and $d_{1} \leq d_{2} \leq \ldots \leq d_{m}, d_{i} \in \mathbb{N}$.

- Using $f_{d+s}(X)=X^{d} f_{S}(X)$, can w.l.o.g. assume $0 \in S_{i j}$ and $d_{1}=0$.
- Upper bounds on NF by Grenet, Koiran, Portier, Strozeki, Tavenas $(2011,2014)$ showed via Wronskian.

Polynomials given by $\Sigma \Pi \Sigma \Pi$-circuits

- For a support $S \subseteq \mathbb{N}$ with $|S| \leq t$ define

$$
f_{S}(X):=\sum_{s \in S} u_{s} X^{s}, \quad \text { where } u_{s} \in \mathbb{R} .
$$

- Fix a system of supports $S_{i j} \subseteq \mathbb{N}$, where $1 \leq i \leq m$ and $1 \leq j \leq k_{i}$. We assume $\left|S_{i j}\right| \leq t$ and $k_{i} \leq k$.
- Consider the sum of products of sparse polynomials

$$
F(X):=\sum_{i=1}^{m} f_{i 1}(X) \cdot \ldots \cdot f_{i k_{i}}(X) X^{d_{i}}
$$

where $f_{i j}:=f_{S_{i j}}$ and $d_{1} \leq d_{2} \leq \ldots \leq d_{m}, d_{i} \in \mathbb{N}$.

- Using $f_{d+s}(X)=X^{d} f_{S}(X)$, can w.l.o.g. assume $0 \in S_{i j}$ and $d_{1}=0$.
- Upper bounds on NF by Grenet, Koiran, Portier, Strozeki, Tavenas $(2011,2014)$ showed via Wronskian.

Koiran's Real Tau Conjecture

Real Tau Conjecture

The number of real zeros of F is bounded by a polynomial in m, k, t.

```
Surprisingly, it is related to Valiant's Conjecture in characteristic zero.
```

 Thm (Koiran 2011)
 The Real \(T_{a U}\) Conjecture implies \(\mathrm{VP}^{0} \neq \mathrm{VNP}^{0}\).
 Tavenas (2014):
- The Real Tau Conjecture also implies VP \neq VNP (allow circuits
using any complex constants).
- VP $\neq \mathrm{VNP}$ can even be derived from weaker bound
$N(F) \leq$ poly $\left(m, t, 2^{\text {toog } k}\right)$
Note: $N(F) \leq m t^{k}=m 2^{k \log t}$ since F is $m t^{k}$-sparse.

Koiran's Real Tau Conjecture

Real Tau Conjecture

The number of real zeros of F is bounded by a polynomial in m, k, t.
Surprisingly, it is related to Valiant's Conjecture in characteristic zero.

Thm (Koiran 2011)
The Real Tau Conjecture implies $\mathrm{VP}^{0} \neq \mathrm{VNP}^{0}$.

Note: $N(F) \leq m t^{k}=m 2^{k \log t}$ since F is $m t^{k}$-sparse.

Koiran's Real Tau Conjecture

Real Tau Conjecture

The number of real zeros of F is bounded by a polynomial in m, k, t.
Surprisingly, it is related to Valiant's Conjecture in characteristic zero.
Thm (Koiran 2011)
The Real Tau Conjecture implies $\mathrm{VP}^{0} \neq \mathrm{VNP}^{0}$.
Tavenas (2014):

- The Real Tau Conjecture also implies VP \neq VNP (allow circuits using any complex constants).
- VP $=\mathrm{VNP}$ can even be derived from weaker bound

$$
N(F) \leq \operatorname{poly}\left(m, t, 2^{k \log k}\right)
$$

Note: $N(F) \leq m t^{k}=m 2^{k \log t}$ since F is $m t^{k}$-sparse.

Related results

Tau Conjecture: The number of integer zeros of $f \in \mathbb{Z}[X]$ is bounded by a polynomial in the arithmetic circuit size of f.

Thm (Shub \& Smale 1995)
The Tau Conjecture implies $\mathrm{P}_{\mathbb{C}} \neq \mathrm{NP}_{\mathbb{C}}$.

Koiran's implication is based on refining my proof of this result, combined with reduction to depth 4 (Agrawal and Vinay 2008).

Related results

Tau Conjecture: The number of integer zeros of $f \in \mathbb{Z}[X]$ is bounded by a polynomial in the arithmetic circuit size of f.

Thm (Shub \& Smale 1995)
The Tau Conjecture implies $\mathrm{P}_{\mathbb{C}} \neq \mathrm{NP}_{\mathbb{C}}$.

Thm (B 2009)

The Tau Conjecture implies $\mathrm{VP}^{0} \neq \mathrm{VNP}^{0}$.
Koiran's implication is based on refining my proof of this result, combined with reduction to depth 4 (Agrawal and Vinay 2008).

A p-adic Tau Conjecture

- Completing the field \mathbb{Q} with respect to absolute value $\|$ leads to \mathbb{R}.
- There are also the p-adic absolute values (nonarchimedean):

$$
|x|_{p}=p^{-\nu} \text { if } x=p^{\nu} \frac{a}{b} \text { with } a, b \in \mathbb{Z} \text { not divisible by } p
$$

- E.g., $|12|_{2}=\left|2^{2} \cdot 3\right|_{2}=2^{-2}$ and $\left|2^{\nu}\right|_{2}=2^{-\nu} \rightarrow 0$ for $\nu \rightarrow \infty$.
- Can formulate p-adic Tau Conjecture. Similarly as over \mathbb{R} one shows: p-adic Tau Conjecture $\Longrightarrow \mathrm{VP}^{0} \neq \mathrm{VNP}^{0}$
- Over \mathbb{Q}_{p} this conjecture may be easier to cope with than over \mathbb{R} !
- Smaller question: Can one infer VP \neq VNP?
- Encouragement: Recent insights (especially on on random polynomials) show that the situation over \mathbb{Q}_{p} is much easier to understand than over \mathbb{R}.

A p-adic Tau Conjecture

- Completing the field \mathbb{Q} with respect to absolute value || leads to \mathbb{R}.
- There are also the p-adic absolute values (nonarchimedean):

$$
|x|_{p}=p^{-\nu} \text { if } x=p^{\nu} \frac{a}{b} \text { with } a, b \in \mathbb{Z} \text { not divisible by } p
$$

- E.g., $|12|_{2}=\left|2^{2} \cdot 3\right|_{2}=2^{-2}$ and $\left|2^{\nu}\right|_{2}=2^{-\nu} \rightarrow 0$ for $\nu \rightarrow \infty$.
- Can formulate p-adic Tau Conjecture. Similarly as over \mathbb{R} one shows:

$$
p \text {-adic Tau Conjecture } \Longrightarrow \mathrm{VP}^{0} \neq \mathrm{VNP}^{0}
$$

- Over \mathbb{Q}_{p} this conjecture may be easier to cope with than over \mathbb{R} !
- Smaller question: Can one infer VP $\neq \mathrm{VNP}$?
- Encouragement: Recent insights (especially on on random polynomials) show that the situation over \mathbb{Q}_{p} is much easier to understand than over \mathbb{R}.

Some known facts on zeros of p-adic polynomials

- p-adic Descartes' rule (Lenstra 1999): t-sparse univariate polynomial $f \in \mathbb{Q}_{p}[X]$ has at most $O\left(p t^{2} \log t\right)$ zeros in \mathbb{Q}_{p}.
- There are $f \in \mathbb{Q}_{p}[X]$ with $\Theta\left(t^{2}\right)$ many zeros
- Some improvements by Krick and Avendano (2011).
- Rojas 2004: Bound on number of p-adic zeros for fewnomial systems

$$
f_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \quad i=1, \ldots, n .
$$

Can be seen as p-adic version of Kushnirenko's Conjecture, which is unknown over \mathbb{R}.

Some known facts on zeros of p-adic polynomials

- p-adic Descartes' rule (Lenstra 1999): t-sparse univariate polynomial $f \in \mathbb{Q}_{p}[X]$ has at most $O\left(p t^{2} \log t\right)$ zeros in \mathbb{Q}_{p}.
- There are $f \in \mathbb{Q}_{p}[X]$ with $\Theta\left(t^{2}\right)$ many zeros
- Some improvements by Krick and Avendano (2011).
- Rojas 2004: Bound on number of p-adic zeros for fewnomial systems

$$
f_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \quad i=1, \ldots, n .
$$

of the form

$$
N_{\mathbb{Q}_{p}}\left(f_{1}, \ldots, f_{n}\right)=O(p t)^{O(n)} .
$$

Can be seen as p-adic version of Kushnirenko's Conjecture, which is unknown over \mathbb{R}.

Bounds for random polynomials

The Real Tau Conjecture is true on average

- Recall the sum of products of sparse polynomials:

$$
F(X):=\sum_{i=1}^{m} f_{i 1}(X) \cdot \ldots \cdot f_{i k_{i}}(X) X^{d_{i}},
$$

where $f_{i j}:=f_{S_{i j}}$ and $S_{i j}$ with $\left|S_{i j}\right| \leq t$ is a support system as before.

- We assume $f_{i j}(X)$ has independent standard gaussian coefficients:

$$
f_{i j}(X):=\sum_{s \in S_{i j}} u_{i j s} X^{s}, \quad u_{i j s} \sim N(0,1) .
$$

Thm (Briquel \& B, Random Structures \& Algorithms 2020)

$$
\mathbb{E} \#\{x \in \mathbb{R} \mid F(x)=0\}=O\left(m k^{2} t\right)
$$

Note this is an almost linear upper bound on the number of real zeros! So typically, there are only very few real zeros.

The Kac-Rice formula

- Assume parametrization $\mathbb{R}^{N} \rightarrow \mathbb{R}[X]_{\leq D}, u \mapsto F(u, X)$ of family of structured polynomials.
- Fix prob. density on \mathbb{R}^{N}, so that $F(u, X)$ becomes random polynomial.
- For $x \in \mathbb{R}$, suppose the random variable $u \mapsto F(u, x)$ has density $\rho_{F(x)}$.

Under some technical assumptions (see Azaïs \& Wschebor) $\mathbb{E}_{u} \#\{x \in[0,1] \mid F(u, x)=0\}=\int_{0}^{1} \mathbb{E}\left(\left|F^{\prime}(x)\right| F(x)=0\right) \operatorname{PF(x)}(0) d x$.

- The conditional expectation is not easy to deal with.
- Technical assumptions hard to verify, but can can infer sunder less assumptions.

The Kac-Rice formula

- Assume parametrization $\mathbb{R}^{N} \rightarrow \mathbb{R}[X]_{\leq D}, u \mapsto F(u, X)$ of family of structured polynomials.
- Fix prob. density on \mathbb{R}^{N}, so that $F(u, X)$ becomes random polynomial.
- For $x \in \mathbb{R}$, suppose the random variable $u \mapsto F(u, x)$ has density $\rho_{F(x)}$.

Kac-Rice Formula

Under some technical assumptions (see Azaïs \& Wschebor)

$$
\mathbb{E}_{u} \#\{x \in[0,1] \mid F(u, x)=0\}=\int_{0}^{1} \mathbb{E}\left(\left|F^{\prime}(x)\right| \mid F(x)=0\right) \rho_{F(x)}(0) d x
$$

- The conditional expectation is not easy to deal with.
- Technical assumptions hard to verify, but can can infer \leq under less assumptions.

Simple application: random linear combinations

- Fix C^{1} weight functions $w_{i}: \mathbb{R} \rightarrow \mathbb{R}$ with variation

$$
V\left(w_{i}\right):=\int_{0}^{1}\left|w_{i}^{\prime}(x)\right| d x
$$

- Note $V\left(w_{i}\right)=\left|w_{i}(1)-w_{i}(0)\right|$ if w_{i} is monotonous.
- Consider random linear combination

$$
F(x):=\sum_{i=1}^{t} u_{i} w_{i}(x), \quad u_{i} \text { independent r.v. }
$$

where density φ_{i} of u_{i} satisfies $\sup \varphi_{i} \leq A$ and $\int_{\mathbb{R}}\left|u_{i}\right| \varphi_{i}\left(u_{i}\right) d u_{i} \leq B$.

* The Kac-Rice formula implies (assume $w_{1}(x)=1$)

- Probabilistic version of Descartes rule obtained for $w_{i}(x)=x^{d_{i}}$. The expectation bound is $A B(t-1)$

Simple application: random linear combinations

- Fix C^{1} weight functions $w_{i}: \mathbb{R} \rightarrow \mathbb{R}$ with variation

$$
V\left(w_{i}\right):=\int_{0}^{1}\left|w_{i}^{\prime}(x)\right| d x
$$

- Note $V\left(w_{i}\right)=\left|w_{i}(1)-w_{i}(0)\right|$ if w_{i} is monotonous.
- Consider random linear combination

$$
F(x):=\sum_{i=1}^{t} u_{i} w_{i}(x), \quad u_{i} \text { independent r.v. }
$$

where density φ_{i} of u_{i} satisfies $\sup \varphi_{i} \leq A$ and $\int_{\mathbb{R}}\left|u_{i}\right| \varphi_{i}\left(u_{i}\right) d u_{i} \leq B$.

- The Kac-Rice formula implies (assume $w_{1}(x)=1$)

$$
\mathbb{E}_{u} \#\{x \in[0,1] \mid F(u, x)=0\} \leq A B \sum_{i=2}^{t} V\left(w_{i}\right)
$$

- Probabilistic version of Descartes rule obtained for $w_{i}(x)=x^{d_{i}}$. The expectation bound is $A B(t-1)$.
- Optimal bound on expectation is $O(\sqrt{t})$ for standard gaussian u_{i} : [B, Erguer, Tonelli-Cueto] and [Jindal, Pandey, Shukla, Zisopoulos 2020].

Special case: all $f_{i j}(x)$ have constant term

- Consider $F(X)$ from before where all $d_{i}=0$, i.e.,

$$
F(X):=\sum_{i=1}^{m} f_{i 1}(X) \cdot \ldots \cdot f_{i k_{i}}(X)
$$

The $f_{i j}(X)$ has support $S_{i j}$ and $0 \in S_{i j}$; hence all $f_{i j}$ have a.s. nonzero constant term

- Kac-Rice formula implies with some work
$\mathbb{E}_{u} \#\{x \in[0,1] \mid F(x)=0\} \leq A B \sum_{i=1}^{m} \sum_{j=1}^{k_{i}} \int_{0}^{1} y_{i j}^{\prime}(x) d x \leq A B m k(t-1)$,
where $y_{i j}(x):=\sum_{s \in S_{i j}} x^{s}$.
- This bound only makes few assumptions on distribution of coefficients.

Considerable difficulty: remove assumption $0 \in S_{i j}$

Dealing with singularities

- Now assume $f_{i j}$ has standard gaussian coefficients.
- Define $\alpha_{i j}(x):=\mathbb{E} f_{i j}(x)^{2}=\sum_{s \in S_{i j}} x^{2 s}$.
- Reduce to counting zeros of random linear combinations

$$
R(x)=\sum_{i=1}^{m} v_{i} q_{i}(x) x^{d_{i}}
$$

with independent random v_{i}, whose distribution is the one of a product of k_{i} standard gaussians.

- The weight functions

$$
q_{i}(x):=\prod_{j=1}^{k_{i}}\left(\frac{\alpha_{i j}(x)}{\alpha_{1 j}(x)}\right)^{\frac{1}{2}}
$$

are obtained by multiplying and dividing sparse sums of squares in a way reflecting the build-up of the arithmetic circuit forming F.

- Key technical idea: introduce logarithmic variation of p

$$
L V(q):=\int_{0}^{1}\left|\frac{d}{d x} \ln q(x)\right| d x=\int_{0}^{1}\left|\frac{q^{\prime}(x)}{q(x)}\right| d x
$$

Open problems

- Prove à la Tavenas that (allow circuits with any constants)

$$
\text { p-adic Tau Conjecture } \Longrightarrow \mathrm{VP} \neq \mathrm{VNP}
$$

- Is the p-adic Tau Conjecture true on average?
- (Dis)prove the p-adic Tau Conjecture.

Thank you for your attention!

