
Zeros of structured polynomials over the reals and p-adics

Zeros of structured polynomials
over the reals and p-adics

Peter Bürgisser

WACT 2023

Warwick University, 28 March 2023



Zeros of structured polynomials over the reals and p-adics

Motivation

Real zeros of sparse polynomials

▸ Study number N(f ) of positive real zeros of univariate polynomial f .

▸ If f has at most t monomial terms, call it t-sparse.

▸ Descartes rule (sharp): N(f ) ≤ t − 1 if f is t-sparse.

▸ Clearly,

N(f1⋯fk) ≤ k(t − 1) if f1, . . . , fk are t-sparse.

▸ How about
f1⋯fk − 1 ?

▸ Expanding and Descartes give N(f1⋯fk − 1) ≤ tk .

▸ Is this bound pessimistic?
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Motivation

Polynomials given by ΣΠΣΠ-circuits

▸ For a support S ⊆ N with ∣S ∣ ≤ t define

fS(X ) ∶=∑
s∈S

usX
s , where us ∈ R.

▸ Fix a system of supports Sij ⊆ N, where 1 ≤ i ≤ m and 1 ≤ j ≤ ki . We
assume ∣Sij ∣ ≤ t and ki ≤ k .

▸ Consider the sum of products of sparse polynomials

F (X ) ∶=
m

∑
i=1

fi1(X ) ⋅ . . . ⋅ fiki (X )X di ,

where fij ∶= fSij
and d1 ≤ d2 ≤ . . . ≤ dm, di ∈ N.

▸ Using fd+S(X ) = X d fS(X ), can w.l.o.g. assume 0 ∈ Sij and d1 = 0.

▸ Upper bounds on NF by Grenet, Koiran, Portier, Strozeki, Tavenas
(2011, 2014) showed via Wronskian.
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Koiran’s Real Tau Conjecture

Real Tau Conjecture

The number of real zeros of F is bounded by a polynomial in m, k, t.

Surprisingly, it is related to Valiant’s Conjecture in characteristic zero.

Thm (Koiran 2011)

The Real Tau Conjecture implies VP0
≠ VNP0.

Tavenas (2014):

▸ The Real Tau Conjecture also implies VP ≠ VNP (allow circuits
using any complex constants).

▸ VP ≠ VNP can even be derived from weaker bound

N(F ) ≤ poly(m, t,2k log k
)

Note: N(F ) ≤ mtk = m2k log t since F is mtk -sparse.
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Motivation

Related results

Tau Conjecture: The number of integer zeros of f ∈ Z[X ] is bounded by
a polynomial in the arithmetic circuit size of f .

Thm (Shub & Smale 1995)

The Tau Conjecture implies PC ≠ NPC.

Thm (B 2009)

The Tau Conjecture implies VP0
≠ VNP0.

Koiran’s implication is based on refining my proof of this result,
combined with reduction to depth 4 (Agrawal and Vinay 2008).
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Motivation

A p-adic Tau Conjecture

▸ Completing the field Q with respect to absolute value ∣ ∣ leads to R.

▸ There are also the p-adic absolute values (nonarchimedean):

∣x ∣p = p−ν if x = pν a
b

with a,b ∈ Z not divisible by p

▸ E.g., ∣12∣2 = ∣22 ⋅ 3∣2 = 2−2 and ∣2ν ∣2 = 2−ν → 0 for ν →∞.

▸ Can formulate p-adic Tau Conjecture. Similarly as over R one shows:

p-adic Tau Conjecture Ô⇒ VP0
≠ VNP0

▸ Over Qp this conjecture may be easier to cope with than over R!

▸ Smaller question: Can one infer VP ≠ VNP?

▸ Encouragement: Recent insights (especially on on random
polynomials) show that the situation over Qp is much easier to
understand than over R.
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Some known facts on zeros of p-adic polynomials

▸ p-adic Descartes’ rule (Lenstra 1999): t-sparse univariate polynomial
f ∈ Qp[X ] has at most O(pt2 log t) zeros in Qp.

▸ There are f ∈ Qp[X ] with Θ(t2) many zeros

▸ Some improvements by Krick and Avendano (2011).

▸ Rojas 2004: Bound on number of p-adic zeros for fewnomial systems

fi(x1, . . . , xn) = 0, i = 1, . . . ,n.

of the form
NQp(f1, . . . , fn) = O(pt)O(n).

Can be seen as p-adic version of Kushnirenko’s Conjecture, which is
unknown over R.
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Bounds for random polynomials

The Real Tau Conjecture is true on average

▸ Recall the sum of products of sparse polynomials:

F (X ) ∶=
m

∑
i=1

fi1(X ) ⋅ . . . ⋅ fiki (X )X di ,

where fij ∶= fSij
and Sij with ∣Sij ∣ ≤ t is a support system as before.

▸ We assume fij(X ) has independent standard gaussian coefficients:

fij(X ) ∶= ∑
s∈Sij

uijsX
s , uijs ∼ N(0,1).

Thm (Briquel & B, Random Structures & Algorithms 2020)

E#{x ∈ R ∣ F (x) = 0} = O(mk2t)

Note this is an almost linear upper bound on the number of real zeros!
So typically, there are only very few real zeros.
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Bounds for random polynomials

The Kac-Rice formula
▸ Assume parametrization RN → R[X ]≤D ,u ↦ F (u,X ) of family of

structured polynomials.

▸ Fix prob. density on RN , so that F (u,X ) becomes random
polynomial.

▸ For x ∈ R, suppose the random variable u ↦ F (u, x) has
density ρF(x).

Kac-Rice Formula

Under some technical assumptions (see Azäıs & Wschebor)

Eu#{x ∈ [0,1] ∣ F (u, x) = 0} = ∫
1

0
E(∣F ′

(x)∣∣F (x) = 0)ρF(x)(0)dx .

▸ The conditional expectation is not easy to deal with.

▸ Technical assumptions hard to verify, but can can infer ≤ under less
assumptions.
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Bounds for random polynomials

Simple application: random linear combinations
▸ Fix C 1 weight functions wi ∶R→ R with variation

V (wi) ∶= ∫

1

0
∣w ′

i (x)∣dx

▸ Note V (wi) = ∣wi(1) −wi(0)∣ if wi is monotonous.
▸ Consider random linear combination

F (x) ∶=
t

∑
i=1

uiwi(x), ui independent r.v.

where density ϕi of ui satisfies supϕi ≤ A and ∫R ∣ui ∣ϕi(ui)dui ≤ B.
▸ The Kac-Rice formula implies (assume w1(x) = 1)

Eu#{x ∈ [0,1] ∣ F (u, x) = 0} ≤ AB
t

∑
i=2

V (wi)

▸ Probabilistic version of Descartes rule obtained for wi(x) = xdi . The
expectation bound is AB(t − 1).

▸ Optimal bound on expectation is O(
√
t) for standard gaussian ui :

[B, Erguer, Tonelli-Cueto] and [Jindal, Pandey, Shukla, Zisopoulos 2020].
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Bounds for random polynomials

Special case: all fij(x) have constant term
▸ Consider F (X ) from before where all di = 0, i.e.,

F (X ) ∶=
m

∑
i=1

fi1(X ) ⋅ . . . ⋅ fiki (X ).

The fij(X ) has support Sij and 0 ∈ Sij ; hence all fij have a.s. nonzero
constant term

▸ Kac-Rice formula implies with some work

Eu#{x ∈ [0,1] ∣ F (x) = 0} ≤ AB
m

∑
i=1

ki

∑
j=1
∫

1

0
y ′ij(x)dx ≤ AB mk(t−1),

where yij(x) ∶= ∑s∈Sij
x s .

▸ This bound only makes few assumptions on distribution of
coefficients.

Considerable difficulty: remove assumption 0 ∈ Sij
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Dealing with singularities
▸ Now assume fij has standard gaussian coefficients.
▸ Define αij(x) ∶= Efij(x)2 = ∑s∈Sij

x2s .
▸ Reduce to counting zeros of random linear combinations

R(x) =
m

∑
i=1

viqi(x)x
di

with independent random vi , whose distribution is the one of a
product of ki standard gaussians.

▸ The weight functions

qi(x) ∶=
ki

∏
j=1

(
αij(x)

α1j(x)
)

1
2

,

are obtained by multiplying and dividing sparse sums of squares in a
way reflecting the build-up of the arithmetic circuit forming F .

▸ Key technical idea: introduce logarithmic variation of p

LV (q) ∶= ∫
1

0
∣
d

dx
lnq(x)∣dx = ∫

1

0
∣
q′(x)
q(x)

∣dx .
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Bounds for random polynomials

Open problems

▸ Prove à la Tavenas that (allow circuits with any constants)

p-adic Tau Conjecture Ô⇒ VP ≠ VNP

▸ Is the p-adic Tau Conjecture true on average?

▸ (Dis)prove the p-adic Tau Conjecture.

Thank you for your attention!
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