Zeros of structured polynomials over the reals and p-adics

Peter Bürgisser

WACT 2023

Warwick University, 28 March 2023

Real zeros of sparse polynomials

- Study number N(f) of positive real zeros of univariate polynomial f.
- ▶ If *f* has at most *t* monomial terms, call it *t*-sparse.
- Descartes rule (sharp): $N(f) \le t 1$ if f is t-sparse.
- ► Clearly,

 $N(f_1 \cdots f_k) \leq k(t-1)$ if f_1, \ldots, f_k are *t*-sparse

How about

$$f_1 \cdots f_k - 1$$
 ?

- Expanding and Descartes give $N(f_1 \cdots f_k 1) \leq t^k$.
- Is this bound pessimistic?

Real zeros of sparse polynomials

- Study number N(f) of positive real zeros of univariate polynomial f.
- ▶ If *f* has at most *t* monomial terms, call it *t*-sparse.
- Descartes rule (sharp): $N(f) \le t 1$ if f is t-sparse.
- Clearly,

$$N(f_1 \cdots f_k) \leq k(t-1)$$
 if f_1, \ldots, f_k are *t*-sparse.

How about

$$f_1 \cdots f_k - 1$$
 ?

- Expanding and Descartes give $N(f_1 \cdots f_k 1) \leq t^k$.
- Is this bound pessimistic?

Polynomials given by $\Sigma\Pi\Sigma\Pi$ -circuits

• For a support $S \subseteq \mathbb{N}$ with $|S| \leq t$ define

$$f_S(X) \coloneqq \sum_{s \in S} u_s X^s$$
, where $u_s \in \mathbb{R}$.

- ▶ Fix a system of supports $S_{ij} \subseteq \mathbb{N}$, where $1 \le i \le m$ and $1 \le j \le k_i$. We assume $|S_{ij}| \le t$ and $k_i \le k$.
- Consider the sum of products of sparse polynomials

$$F(X) \coloneqq \sum_{i=1}^m f_{i1}(X) \cdot \ldots \cdot f_{ik_i}(X) X^{d_i},$$

where $f_{ij} \coloneqq f_{S_{ij}}$ and $d_1 \leq d_2 \leq \ldots \leq d_m$, $d_i \in \mathbb{N}$.

- Using $f_{d+S}(X) = X^d f_S(X)$, can w.l.o.g. assume $0 \in S_{ij}$ and $d_1 = 0$.
- Upper bounds on NF by Grenet, Koiran, Portier, Strozeki, Tavenas (2011, 2014) showed via Wronskian.

Polynomials given by $\Sigma\Pi\Sigma\Pi$ -circuits

• For a support $S \subseteq \mathbb{N}$ with $|S| \leq t$ define

$$f_S(X) \coloneqq \sum_{s \in S} u_s X^s$$
, where $u_s \in \mathbb{R}$.

- ▶ Fix a system of supports $S_{ij} \subseteq \mathbb{N}$, where $1 \le i \le m$ and $1 \le j \le k_i$. We assume $|S_{ij}| \le t$ and $k_i \le k$.
- Consider the sum of products of sparse polynomials

$$F(X) \coloneqq \sum_{i=1}^m f_{i1}(X) \cdot \ldots \cdot f_{ik_i}(X) X^{d_i},$$

where $f_{ij} \coloneqq f_{S_{ij}}$ and $d_1 \leq d_2 \leq \ldots \leq d_m$, $d_i \in \mathbb{N}$.

- Using $f_{d+S}(X) = X^d f_S(X)$, can w.l.o.g. assume $0 \in S_{ij}$ and $d_1 = 0$.
- Upper bounds on NF by Grenet, Koiran, Portier, Strozeki, Tavenas (2011, 2014) showed via Wronskian.

Koiran's Real Tau Conjecture

Real Tau Conjecture

The number of real zeros of F is bounded by a polynomial in m, k, t.

Surprisingly, it is related to Valiant's Conjecture in characteristic zero.

Thm (Koiran 2011)

The Real Tau Conjecture implies $VP^0 \neq VNP^0$.

Tavenas (2014):

- The Real Tau Conjecture also implies VP ≠ VNP (allow circuits using any complex constants).
- $VP \neq VNP$ can even be derived from weaker bound

 $N(F) \leq \operatorname{poly}(m, t, 2^{k \log k})$

Note: $N(F) \le mt^k = m2^{k\log t}$ since F is mt^k -sparse.

Koiran's Real Tau Conjecture

Real Tau Conjecture

The number of real zeros of F is bounded by a polynomial in m, k, t.

Surprisingly, it is related to Valiant's Conjecture in characteristic zero.

Thm (Koiran 2011)

The Real Tau Conjecture implies $VP^0 \neq VNP^0$.

Tavenas (2014):

- The Real Tau Conjecture also implies VP ≠ VNP (allow circuits using any complex constants).
- ▶ VP ≠ VNP can even be derived from weaker bound

 $N(F) \leq \operatorname{poly}(m, t, 2^{k \log k})$

Note: $N(F) \le mt^k = m2^{k\log t}$ since F is mt^k -sparse.

Koiran's Real Tau Conjecture

Real Tau Conjecture

The number of real zeros of F is bounded by a polynomial in m, k, t.

Surprisingly, it is related to Valiant's Conjecture in characteristic zero.

Thm (Koiran 2011)

The Real Tau Conjecture implies $VP^0 \neq VNP^0$.

Tavenas (2014):

- The Real Tau Conjecture also implies VP ≠ VNP (allow circuits using any complex constants).
- $VP \neq VNP$ can even be derived from weaker bound

$$N(F) \leq \operatorname{poly}(m, t, 2^{k \log k})$$

Note: $N(F) \le mt^k = m2^{k\log t}$ since F is mt^k -sparse.

Related results

Tau Conjecture: The number of integer zeros of $f \in \mathbb{Z}[X]$ is bounded by a polynomial in the arithmetic circuit size of f.

Thm (Shub & Smale 1995)

The Tau Conjecture implies $P_{\mathbb{C}} \neq NP_{\mathbb{C}}.$

Thm (B 2009)

The Tau Conjecture implies $VP^0 \neq VNP^0$.

Koiran's implication is based on refining my proof of this result, combined with reduction to depth 4 (Agrawal and Vinay 2008).

Related results

Tau Conjecture: The number of integer zeros of $f \in \mathbb{Z}[X]$ is bounded by a polynomial in the arithmetic circuit size of f.

Thm (Shub & Smale 1995)

The Tau Conjecture implies $P_{\mathbb{C}} \neq NP_{\mathbb{C}}$.

Thm (B 2009)

The Tau Conjecture implies $VP^0 \neq VNP^0$.

Koiran's implication is based on refining my proof of this result, combined with reduction to depth 4 (Agrawal and Vinay 2008).

A *p*-adic Tau Conjecture

- Completing the field \mathbb{Q} with respect to absolute value | | leads to \mathbb{R} .
- There are also the p-adic absolute values (nonarchimedean):

 $|x|_p = p^{-\nu}$ if $x = p^{\nu} \frac{a}{b}$ with $a, b \in \mathbb{Z}$ not divisible by p

• E.g.,
$$|12|_2 = |2^2 \cdot 3|_2 = 2^{-2}$$
 and $|2^{\nu}|_2 = 2^{-\nu} \to 0$ for $\nu \to \infty$.

Can formulate p-adic Tau Conjecture. Similarly as over R one shows:

p-adic Tau Conjecture \implies VP⁰ \neq VNP⁰

- Over \mathbb{Q}_p this conjecture may be easier to cope with than over $\mathbb{R}!$
- ▶ Smaller question: Can one infer VP ≠ VNP?
- Encouragement: Recent insights (especially on on random polynomials) show that the situation over Q_p is much easier to understand than over R.

A *p*-adic Tau Conjecture

- Completing the field \mathbb{Q} with respect to absolute value | | leads to \mathbb{R} .
- There are also the p-adic absolute values (nonarchimedean):

 $|x|_p = p^{-\nu}$ if $x = p^{\nu} \frac{a}{b}$ with $a, b \in \mathbb{Z}$ not divisible by p

- E.g., $|12|_2 = |2^2 \cdot 3|_2 = 2^{-2}$ and $|2^{\nu}|_2 = 2^{-\nu} \to 0$ for $\nu \to \infty$.
- Can formulate *p*-adic Tau Conjecture. Similarly as over \mathbb{R} one shows:

p-adic Tau Conjecture \implies VP⁰ \neq VNP⁰

- Over \mathbb{Q}_p this conjecture may be easier to cope with than over \mathbb{R} !
- Smaller question: Can one infer VP ≠ VNP?
- ► Encouragement: Recent insights (especially on on random polynomials) show that the situation over Q_p is much easier to understand than over ℝ.

Some known facts on zeros of *p*-adic polynomials

- *p*-adic Descartes' rule (Lenstra 1999): *t*-sparse univariate polynomial *f* ∈ Q_p[X] has at most O(pt² log t) zeros in Q_p.
- There are $f \in \mathbb{Q}_p[X]$ with $\Theta(t^2)$ many zeros
- Some improvements by Krick and Avendano (2011).
- Rojas 2004: Bound on number of p-adic zeros for fewnomial systems

$$f_i(x_1,\ldots,x_n)=0, \quad i=1,\ldots,n.$$

of the form

$$N_{\mathbb{Q}_p}(f_1,\ldots,f_n)=O(pt)^{O(n)}.$$

Can be seen as *p*-adic version of Kushnirenko's Conjecture, which is unknown over \mathbb{R} .

Some known facts on zeros of *p*-adic polynomials

- *p*-adic Descartes' rule (Lenstra 1999): *t*-sparse univariate polynomial *f* ∈ Q_p[X] has at most O(pt² log t) zeros in Q_p.
- There are $f \in \mathbb{Q}_p[X]$ with $\Theta(t^2)$ many zeros
- Some improvements by Krick and Avendano (2011).
- ▶ Rojas 2004: Bound on number of *p*-adic zeros for fewnomial systems

$$f_i(x_1,\ldots,x_n)=0, \quad i=1,\ldots,n.$$

of the form

$$N_{\mathbb{Q}_p}(f_1,\ldots,f_n)=O(pt)^{O(n)}.$$

Can be seen as *p*-adic version of Kushnirenko's Conjecture, which is unknown over \mathbb{R} .

Bounds for random polynomials

The Real Tau Conjecture is true on average

Recall the sum of products of sparse polynomials:

$$F(X) \coloneqq \sum_{i=1}^m f_{i1}(X) \cdot \ldots \cdot f_{ik_i}(X) X^{d_i},$$

where $f_{ij} \coloneqq f_{S_{ij}}$ and S_{ij} with $|S_{ij}| \le t$ is a support system as before.

• We assume $f_{ij}(X)$ has independent standard gaussian coefficients:

$$f_{ij}(X)\coloneqq \sum_{s\in S_{ij}} u_{ijs}X^s, \quad u_{ijs}\sim N(0,1).$$

I hm (Briquel & B, Random Structures & Algorithms 2020)

$$\mathbb{E}\#\{x\in\mathbb{R}\mid F(x)=0\}=O(mk^2t)$$

Note this is an almost linear upper bound on the number of real zeros! So typically, there are only very few real zeros.

The Kac-Rice formula

- Assume parametrization ℝ^N → ℝ[X]_{≤D}, u ↦ F(u, X) of family of structured polynomials.
- Fix prob. density on \mathbb{R}^N , so that F(u, X) becomes random polynomial.
- For x ∈ ℝ, suppose the random variable u → F(u,x) has density ρ_{F(x)}.

Kac-Rice Formula

Under some technical assumptions (see Azaïs & Wschebor)

$$\mathbb{E}_u \# \{ x \in [0,1] \mid F(u,x) = 0 \} = \int_0^1 \mathbb{E} (|F'(x)| | F(x) = 0) \rho_{F(x)}(0) \, dx.$$

- The conditional expectation is not easy to deal with.
- ► Technical assumptions hard to verify, but can can infer ≤ under less assumptions.

The Kac-Rice formula

- Assume parametrization ℝ^N → ℝ[X]_{≤D}, u ↦ F(u, X) of family of structured polynomials.
- Fix prob. density on \mathbb{R}^N , so that F(u, X) becomes random polynomial.
- For x ∈ ℝ, suppose the random variable u → F(u,x) has density ρ_{F(x)}.

Kac-Rice Formula

Under some technical assumptions (see Azaïs & Wschebor)

$$\mathbb{E}_u \# \{ x \in [0,1] \mid F(u,x) = 0 \} = \int_0^1 \mathbb{E} (|F'(x)| | F(x) = 0) \rho_{F(x)}(0) \, dx.$$

- The conditional expectation is not easy to deal with.
- ► Technical assumptions hard to verify, but can can infer ≤ under less assumptions.

Simple application: random linear combinations

Fix C^1 weight functions $w_i \colon \mathbb{R} \to \mathbb{R}$ with variation

$$V(w_i) \coloneqq \int_0^1 |w_i'(x)| \, dx$$

• Note $V(w_i) = |w_i(1) - w_i(0)|$ if w_i is monotonous.

Consider random linear combination

$$F(x) \coloneqq \sum_{i=1}^{t} u_i w_i(x), \quad u_i \text{ independent r.v.}$$

where density φ_i of u_i satisfies $\sup \varphi_i \leq A$ and $\int_{\mathbb{R}} |u_i| \varphi_i(u_i) du_i \leq B$. The Kac-Rice formula implies (assume $w_1(x) = 1$)

$$\mathbb{E}_{u} \# \{ x \in [0,1] \mid F(u,x) = 0 \} \le AB \sum_{i=2}^{*} V(w_{i})$$

- Probabilistic version of Descartes rule obtained for $w_i(x) = x^{d_i}$. The expectation bound is AB(t-1).
- Optimal bound on expectation is $O(\sqrt{t})$ for standard gaussian u_i : [B, Erguer, Tonelli-Cueto] and [Jindal, Pandey, Shukla, Zisopoulos 2020].

Simple application: random linear combinations

Fix C^1 weight functions $w_i \colon \mathbb{R} \to \mathbb{R}$ with variation

$$V(w_i) \coloneqq \int_0^1 |w_i'(x)| \, dx$$

• Note $V(w_i) = |w_i(1) - w_i(0)|$ if w_i is monotonous.

Consider random linear combination

$$F(x) \coloneqq \sum_{i=1}^{t} u_i w_i(x), \quad u_i \text{ independent r.v.}$$

where density φ_i of u_i satisfies $\sup \varphi_i \leq A$ and $\int_{\mathbb{R}} |u_i| \varphi_i(u_i) du_i \leq B$. The Kap Disc formula implies (accurate $u_i(u) = 1$)

• The Kac-Rice formula implies (assume $w_1(x) = 1$)

$$\mathbb{E}_{u} \# \{ x \in [0,1] \mid F(u,x) = 0 \} \le AB \sum_{i=2}^{\iota} V(w_{i})$$

- Probabilistic version of Descartes rule obtained for w_i(x) = x^{d_i}. The expectation bound is AB(t-1).
- Optimal bound on expectation is $O(\sqrt{t})$ for standard gaussian u_i : [B, Erguer, Tonelli-Cueto] and [Jindal, Pandey, Shukla, Zisopoulos 2020].

Special case: all $f_{ij}(x)$ have constant term

• Consider F(X) from before where all $d_i = 0$, i.e.,

$$F(X) \coloneqq \sum_{i=1}^m f_{i1}(X) \cdot \ldots \cdot f_{ik_i}(X).$$

The $f_{ij}(X)$ has support S_{ij} and $0 \in S_{ij}$; hence all f_{ij} have a.s. nonzero constant term

Kac-Rice formula implies with some work

$$\mathbb{E}_{u} \# \{ x \in [0,1] \mid F(x) = 0 \} \le AB \sum_{i=1}^{m} \sum_{j=1}^{k_{i}} \int_{0}^{1} y_{ij}'(x) \, dx \le AB \, mk(t-1),$$

where $y_{ij}(x) \coloneqq \sum_{s \in S_{ij}} x^s$.

 This bound only makes few assumptions on distribution of coefficients.

Considerable difficulty: remove assumption $0 \in S_{ij}$

Dealing with singularities

- ▶ Now assume *f_{ij}* has standard gaussian coefficients.
- Define $\alpha_{ij}(x) \coloneqq \mathbb{E}f_{ij}(x)^2 = \sum_{s \in S_{ij}} x^{2s}$.
- Reduce to counting zeros of random linear combinations

$$R(x) = \sum_{i=1}^{m} \mathbf{v}_i q_i(x) x^{d_i}$$

with independent random v_i , whose distribution is the one of a product of k_i standard gaussians.

The weight functions

$$q_i(x) \coloneqq \prod_{j=1}^{k_i} \left(\frac{\alpha_{ij}(x)}{\alpha_{1j}(x)}\right)^{\frac{1}{2}},$$

are obtained by multiplying and dividing sparse sums of squares in a way reflecting the build-up of the arithmetic circuit forming F.

Key technical idea: introduce logarithmic variation of p

$$LV(q) := \int_0^1 \left| \frac{d}{dx} \ln q(x) \right| dx = \int_0^1 \left| \frac{q'(x)}{q(x)} \right| dx.$$

Open problems

Prove à la Tavenas that (allow circuits with any constants)

p-adic Tau Conjecture \implies VP \neq VNP

- Is the p-adic Tau Conjecture true on average?
- (Dis)prove the *p*-adic Tau Conjecture.

Thank you for your attention!