Black-box Identity Testing of Noncommutative Rational Formulas of Inversion Height Two

Abhranil Chatterjee

Joint work with V. Arvind and Partha Mukhopadhyay

Workshop on Algebraic Complexity Theory (WACT), 2023

Polynomial Identity Testing

- Polynomial identity testing (PIT): to decide if a given circuit/ABP/formula computes the zero polynomial.

Polynomial Identity Testing

- Polynomial identity testing (PIT): to decide if a given circuit/ABP/formula computes the zero polynomial.
- Equivalently, to decide whether there exists a nonzero evaluation.

Polynomial Identity Testing

- Polynomial identity testing (PIT): to decide if a given circuit/ABP/formula computes the zero polynomial.
- Equivalently, to decide whether there exists a nonzero evaluation.
- PIT is of two types: white-box and black-box.

Polynomial Identity Testing

- Polynomial identity testing (PIT): to decide if a given circuit/ABP/formula computes the zero polynomial.
- Equivalently, to decide whether there exists a nonzero evaluation.
- PIT is of two types: white-box and black-box.
- In black-box PIT, the polynomial is given as an evaluation oracle and the goal is to find a nonzero evaluation querying the oracle.

Polynomial Identity Testing

- Polynomial identity testing (PIT): to decide if a given circuit/ABP/formula computes the zero polynomial.
- Equivalently, to decide whether there exists a nonzero evaluation.
- PIT is of two types: white-box and black-box.
- In black-box PIT, the polynomial is given as an evaluation oracle and the goal is to find a nonzero evaluation querying the oracle.
- The goal is to output a list of evaluations that works for every polynomial.

Polynomial Identity Testing

Definition (Hitting Set)

We say $\mathcal{H} \in \mathbb{Q}^{n}$ is a hitting set for a circuit class $C \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, if for every nonzero $f \in C$, there exists some $\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{H}$ s.t. $f\left(a_{1}, \ldots, a_{n}\right) \neq 0$.

Polynomial Identity Testing

Definition (Hitting Set)

We say $\mathcal{H} \in \mathbb{Q}^{n}$ is a hitting set for a circuit class $C \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, if for every nonzero $f \in C$, there exists some $\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{H}$ s.t. $f\left(a_{1}, \ldots, a_{n}\right) \neq 0$.

- Polynomial Identity Lemma : A randomized polynomial time black-box PIT algorithm for commutative circuits. Derandomizing PIT is open.

Polynomial Identity Testing

Definition (Hitting Set)

We say $\mathcal{H} \in \mathbb{Q}^{n}$ is a hitting set for a circuit class $C \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, if for every nonzero $f \in C$, there exists some $\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{H}$ s.t. $f\left(a_{1}, \ldots, a_{n}\right) \neq 0$.

- Polynomial Identity Lemma : A randomized polynomial time black-box PIT algorithm for commutative circuits. Derandomizing PIT is open.
- Efficient derandomization is known for some special cases, ROABP is of our particular interest.

Noncommutative PIT

- Noncommutative PIT: to decide if a given noncommutative circuit/ABP/formula computes the zero polynomial in the free algebra.

Noncommutative PIT

- Noncommutative PIT: to decide if a given noncommutative circuit/ ABP /formula computes the zero polynomial in the free algebra.

Example

$$
\begin{aligned}
& \left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right) \neq x_{1}^{2}-x_{2}^{2} \\
& \left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)=x_{1}^{2}-x_{2}^{2}-x_{1} x_{2}+x_{2} x_{1}
\end{aligned}
$$

Noncommutative PIT

- Noncommutative PIT: to decide if a given noncommutative circuit/ABP/formula computes the zero polynomial in the free algebra.

Example

$$
\begin{aligned}
& \left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right) \neq x_{1}^{2}-x_{2}^{2} \\
& \left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)=x_{1}^{2}-x_{2}^{2}-x_{1} x_{2}+x_{2} x_{1}
\end{aligned}
$$

- The black-box PIT is to efficiently find a set of matrix evaluations $\left(p_{1}, \ldots, p_{n}\right) \in \operatorname{Mat}_{d}^{n}(\mathbb{Q})$ of small size such that for some evaluation $f\left(p_{1}, \ldots, p_{n}\right) \neq 0$.

Noncommutative PIT

- Noncommutative PIT: to decide if a given noncommutative circuit/ABP/formula computes the zero polynomial in the free algebra.

Example

$$
\begin{aligned}
& \left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right) \neq x_{1}^{2}-x_{2}^{2} \\
& \left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)=x_{1}^{2}-x_{2}^{2}-x_{1} x_{2}+x_{2} x_{1}
\end{aligned}
$$

- The black-box PIT is to efficiently find a set of matrix evaluations $\left(p_{1}, \ldots, p_{n}\right) \in \operatorname{Mat}_{d}^{n}(\mathbb{Q})$ of small size such that for some evaluation $f\left(p_{1}, \ldots, p_{n}\right) \neq 0$.
- [Forbes and Shpilka (2013)] Quasipolynomial-size hitting set for noncommutative formulas (and ABPs) s.t. $f\left(p_{1}, \ldots, p_{n}\right)$ is nonzero.

Noncommutative Rational Functions

- Commutative computation with inverses : admits a canonical representation, each element can be expressed as $f g^{-1}$ for some $f, g \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.

Noncommutative Rational Functions

- Commutative computation with inverses : admits a canonical representation, each element can be expressed as $f g^{-1}$ for some $f, g \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.
- Noncommutative computation with inverses: computes noncommutative rational functions, elements of the universal free skew field.

Noncommutative Rational Functions

- Commutative computation with inverses : admits a canonical representation, each element can be expressed as $f g^{-1}$ for some $f, g \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.
- Noncommutative computation with inverses: computes noncommutative rational functions, elements of the universal free skew field.
- Two noncommutative rational expressions compute same rational function in the free skew-field if they agree on evaluations on every matrix tuple whenever defined [Amitsur (1966)].

Noncommutative Rational Functions

- Commutative computation with inverses : admits a canonical representation, each element can be expressed as $f g^{-1}$ for some $f, g \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.
- Noncommutative computation with inverses: computes noncommutative rational functions, elements of the universal free skew field.
- Two noncommutative rational expressions compute same rational function in the free skew-field if they agree on evaluations on every matrix tuple whenever defined [Amitsur (1966)].
- Unlike commutative setting, it does not have any canonical representation.

Noncommutative Rational Functions

- Commutative computation with inverses : admits a canonical representation, each element can be expressed as $f g^{-1}$ for some $f, g \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.
- Noncommutative computation with inverses: computes noncommutative rational functions, elements of the universal free skew field.
- Two noncommutative rational expressions compute same rational function in the free skew-field if they agree on evaluations on every matrix tuple whenever defined [Amitsur (1966)].
- Unlike commutative setting, it does not have any canonical representation.
- Inversion height is the maximum number of nested inverses. Bounded by $O(\log s)$ for a size s formula [HW15].

Rational Identity Testing

- Rational Identity Testing : Given a noncommutative rational formula, determine if it computes zero in $\mathrm{Q} \nless x_{1}, \ldots, x_{n} \ngtr$.

Rational Identity Testing

- Rational Identity Testing : Given a noncommutative rational formula, determine if it computes zero in $\mathrm{Q} \nless x_{1}, \ldots, x_{n} \ngtr$.
- Equivalently, decide whether there exists a nonzero matrix evaluation or not.

Rational Identity Testing

- Rational Identity Testing : Given a noncommutative rational formula, determine if it computes zero in $\mathrm{Q} \nless x_{1}, \ldots, x_{n} \gg$.
- Equivalently, decide whether there exists a nonzero matrix evaluation or not.

Example

$\left(x+x y^{-1} x\right)^{-1}+(x+y)^{-1}-x^{-1}$, known as Hua's identity [Hua (1949)], is zero in the free skew-field.

Known Results

- RIT for rational formulas can be solved in deterministic polynomial time ([GGOW16], [IQS18], [HH21]) in white-box.

Known Results

- RIT for rational formulas can be solved in deterministic polynomial time ([GGOW16], [IQS18], [HH21]) in white-box.
- In black-box, randomized polynomial time [DM17].

Known Results

- RIT for rational formulas can be solved in deterministic polynomial time ([GGOW16], [IQS18], [HH21]) in white-box.
- In black-box, randomized polynomial time [DM17].
- Derandomization of black-box RIT is open.

Known Results

- RIT for rational formulas can be solved in deterministic polynomial time ([GGOW16], [IQS18], [HH21]) in white-box.
- In black-box, randomized polynomial time [DM17].
- Derandomization of black-box RIT is open.
- Can we derandomize even for rational formulas of bounded inversion height?

Our Result

Theorem (RIT of inversion height two)

We can construct a quasipolynomial-size hitting set for the class of noncommutative rational formulas of inversion height two.

A Toy Example

- Let $r\left(x_{1}, \ldots, x_{n}\right)$ is the input rational formula of size s and r is defined at $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Q}^{n}$.

A Toy Example

- Let $r\left(x_{1}, \ldots, x_{n}\right)$ is the input rational formula of size s and r is defined at $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Q}^{n}$.
- Consider $r\left(x_{1}+a_{1}, \ldots, x_{n}+a_{n}\right)$.

A Toy Example

- Let $r\left(x_{1}, \ldots, x_{n}\right)$ is the input rational formula of size s and r is defined at $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Q}^{n}$.
- Consider $r\left(x_{1}+a_{1}, \ldots, x_{n}+a_{n}\right)$.
- Inverse to power series transformation using Taylor series: $(f(x+a))^{-1}=(f(a)+r e s t)^{-1}$.

A Toy Example

- Let $r\left(x_{1}, \ldots, x_{n}\right)$ is the input rational formula of size s and r is defined at $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Q}^{n}$.
- Consider $r\left(x_{1}+a_{1}, \ldots, x_{n}+a_{n}\right)$.
- Inverse to power series transformation using Taylor series: $(f(x+a))^{-1}=(f(a)+r e s t)^{-1}$.
- $r\left(x_{1}+a_{1}, \ldots, x_{n}+a_{n}\right)$ is a recognizable series of size $2 s$.

A Toy Example

- Let $r\left(x_{1}, \ldots, x_{n}\right)$ is the input rational formula of size s and r is defined at $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Q}^{n}$.
- Consider $r\left(x_{1}+a_{1}, \ldots, x_{n}+a_{n}\right)$.
- Inverse to power series transformation using Taylor series: $(f(x+a))^{-1}=(f(a)+r e s t)^{-1}$.
- $r\left(x_{1}+a_{1}, \ldots, x_{n}+a_{n}\right)$ is a recognizable series of size $2 s$.
- RIT of r now reduces to PIT of a noncommutative ABP.

A Toy Example

- Let $r\left(x_{1}, \ldots, x_{n}\right)$ is the input rational formula of size s and r is defined at $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Q}^{n}$.
- Consider $r\left(x_{1}+a_{1}, \ldots, x_{n}+a_{n}\right)$.
- Inverse to power series transformation using Taylor series: $(f(x+a))^{-1}=(f(a)+r e s t)^{-1}$.
- $r\left(x_{1}+a_{1}, \ldots, x_{n}+a_{n}\right)$ is a recognizable series of size $2 s$.
- RIT of r now reduces to PIT of a noncommutative ABP.
r may not be defined at any $\left(a_{1}, \ldots a_{n}\right) \in \mathbb{Q}^{n}$, for example, $r=\left(x_{1} x_{2}-x_{2} x_{1}\right)^{-1}$.

A Matrix Shift

- There exists $\left(p_{1}, \ldots, p_{n}\right) \in \operatorname{Mat}_{d}^{n}(\mathbb{Q})$ such that r is defined at that matrix tuple.

A Matrix Shift

- There exists $\left(p_{1}, \ldots, p_{n}\right) \in \operatorname{Mat}_{d}^{n}(\mathbb{Q})$ such that r is defined at that matrix tuple.
- Consider $r\left(x_{1}+p_{1}, \ldots, x_{n}+p_{n}\right)$ and expand.

A Matrix Shift

- There exists $\left(p_{1}, \ldots, p_{n}\right) \in \operatorname{Mat}_{d}^{n}(\mathbb{Q})$ such that r is defined at that matrix tuple.
- Consider $r\left(x_{1}+p_{1}, \ldots, x_{n}+p_{n}\right)$ and expand.
- It produces terms $p_{1} x_{2} p_{3} x_{4}, p_{1} x_{2} x_{3} p_{4}$ etc where $p_{1} x_{1} p_{2} x_{2}$ and $p_{1} p_{2} x_{1} x_{2}$ are two different words.

A Matrix Shift

- There exists $\left(p_{1}, \ldots, p_{n}\right) \in \operatorname{Mat}_{d}^{n}(\mathbb{Q})$ such that r is defined at that matrix tuple.
- Consider $r\left(x_{1}+p_{1}, \ldots, x_{n}+p_{n}\right)$ and expand.
- It produces terms $p_{1} x_{2} p_{3} x_{4}, p_{1} x_{2} x_{3} p_{4}$ etc where $p_{1} x_{1} p_{2} x_{2}$ and $p_{1} p_{2} x_{1} x_{2}$ are two different words.
- These are called generalized monomials and studied by Volčič (2018). Generalized series and generalized polynomial are defined accordingly.

A Matrix Shift

- There exists $\left(p_{1}, \ldots, p_{n}\right) \in \operatorname{Mat}_{d}^{n}(\mathbb{Q})$ such that r is defined at that matrix tuple.
- Consider $r\left(x_{1}+p_{1}, \ldots, x_{n}+p_{n}\right)$ and expand.
- It produces terms $p_{1} x_{2} p_{3} x_{4}, p_{1} x_{2} x_{3} p_{4}$ etc where $p_{1} x_{1} p_{2} x_{2}$ and $p_{1} p_{2} x_{1} x_{2}$ are two different words.
- These are called generalized monomials and studied by Volčič (2018). Generalized series and generalized polynomial are defined accordingly.
- We can define a generalized ABP (or an automaton) over $\operatorname{Mat}_{m}(\mathbb{Q})$ where the edge labels are of form $\sum p_{i} x_{i} q_{i}$ for some $p_{i}, q_{i} \in \operatorname{Mat}_{m}(\mathbb{Q})$.

A Matrix Shift

- Let $r\left(x_{1}, \ldots, x_{n}\right)$ is the input rational formula of size s and r is defined at $\left(p_{1}, \ldots p_{n}\right) \in \operatorname{Mat}_{m}^{n}(\mathbb{Q})$.

A Matrix Shift

- Let $r\left(x_{1}, \ldots, x_{n}\right)$ is the input rational formula of size s and r is defined at $\left(p_{1}, \ldots p_{n}\right) \in \operatorname{Mat}_{m}^{n}(\mathbb{Q})$.
- Consider $r\left(x_{1}+p_{1}, \ldots, x_{n}+p_{n}\right)$.

A Matrix Shift

- Let $r\left(x_{1}, \ldots, x_{n}\right)$ is the input rational formula of size s and r is defined at $\left(p_{1}, \ldots p_{n}\right) \in \operatorname{Mat}_{m}^{n}(\mathbb{Q})$.
- Consider $r\left(x_{1}+p_{1}, \ldots, x_{n}+p_{n}\right)$.
- $r\left(x_{1}+p_{1}, \ldots, x_{n}+p_{n}\right)$ is a generalized recognizable series of size at most $2 s$ [Volčič].

A Matrix Shift

- Let $r\left(x_{1}, \ldots, x_{n}\right)$ is the input rational formula of size s and r is defined at $\left(p_{1}, \ldots p_{n}\right) \in \operatorname{Mat}_{m}^{n}(\mathbb{Q})$.
- Consider $r\left(x_{1}+p_{1}, \ldots, x_{n}+p_{n}\right)$.
- $r\left(x_{1}+p_{1}, \ldots, x_{n}+p_{n}\right)$ is a generalized recognizable series of size at most $2 s$ [Volčič].
- RIT of r now reduces to identity testing of a generalized ABP.

A Matrix Shift

- Let $r\left(x_{1}, \ldots, x_{n}\right)$ is the input rational formula of size s and r is defined at $\left(p_{1}, \ldots p_{n}\right) \in \operatorname{Mat}_{m}^{n}(\mathbb{Q})$.
- Consider $r\left(x_{1}+p_{1}, \ldots, x_{n}+p_{n}\right)$.
- $r\left(x_{1}+p_{1}, \ldots, x_{n}+p_{n}\right)$ is a generalized recognizable series of size at most $2 s$ [Volčič].
- RIT of r now reduces to identity testing of a generalized ABP.
- Identity testing of a generalized ABP over $\operatorname{Mat}_{m}(\mathbb{Q})$ reduces to PIT of $m \times m$ matrix of noncommutative ABPs.

Strong Hitting Set

- Observe that, r is defined on a matrix tuple, if for every inverse gate it evaluates to an invertible matrix.

Strong Hitting Set

- Observe that, r is defined on a matrix tuple, if for every inverse gate it evaluates to an invertible matrix.

Definition

$\mathcal{H} \in \operatorname{Mat}_{d}^{n}(\mathbb{Q})$ is a strong hitting set for a circuit class $C \subseteq \mathbb{Q} \nless x_{1}, \ldots, x_{n} \gg$, if for every nonzero $r \in C$, there exists some $\left(p_{1}, \ldots, p_{n}\right) \in \mathcal{H}$ s.t. $r\left(p_{1}, \ldots, p_{n}\right)$

Strong Hitting Set

- Observe that, r is defined on a matrix tuple, if for every inverse gate it evaluates to an invertible matrix.

Definition

$\mathcal{H} \in \operatorname{Mat}_{d}^{n}(\mathbb{Q})$ is a strong hitting set for a circuit class $C \subseteq \mathbb{Q} \nless x_{1}, \ldots, x_{n} \ngtr$, if for every nonzero $r \in C$, there exists some $\left(p_{1}, \ldots, p_{n}\right) \in \mathcal{H}$ s.t. $r\left(p_{1}, \ldots, p_{n}\right)$ is invertible.

- The existence follows from the result of Ivanyos, Qiao and Subrahmanyam (2018).

Strong Hitting Set

- Observe that, r is defined on a matrix tuple, if for every inverse gate it evaluates to an invertible matrix.

Definition

$\mathcal{H} \in \operatorname{Mat}_{d}^{n}(\mathbb{Q})$ is a strong hitting set for a circuit class $C \subseteq \mathbb{Q} \nless x_{1}, \ldots, x_{n} \gg$, if for every nonzero $r \in C$, there exists some $\left(p_{1}, \ldots, p_{n}\right) \in \mathcal{H}$ s.t. $r\left(p_{1}, \ldots, p_{n}\right)$ is invertible.

- The existence follows from the result of Ivanyos, Qiao and Subrahmanyam (2018).
- Our refined goal is now to construct a strong hitting set for rational formulas of inversion height one.

Our Approach

Hitting Set of height 2
scaling

Our Approach

- Intuitively, a division algebra is a matrix algebra where we can always do additions, multiplications and divisions.

Our Approach

- Intuitively, a division algebra is a matrix algebra where we can always do additions, multiplications and divisions.
- We can define an ABP (or an automaton) over a division algebra D where the edge labels are of form $\sum p_{i} x_{i} q_{i}$ for some $p_{i}, q_{i} \in D$.

Our Approach

- Intuitively, a division algebra is a matrix algebra where we can always do additions, multiplications and divisions.
- We can define an ABP (or an automaton) over a division algebra D where the edge labels are of form $\sum p_{i} x_{i} q_{i}$ for some $p_{i}, q_{i} \in D$.
- Constructing a strong hitting set for a division algebra ABP reduces to PIT of a product of ROABPs.

Our Approach

- Intuitively, a division algebra is a matrix algebra where we can always do additions, multiplications and divisions.
- We can define an ABP (or an automaton) over a division algebra D where the edge labels are of form $\sum p_{i} x_{i} q_{i}$ for some $p_{i}, q_{i} \in D$.
- Constructing a strong hitting set for a division algebra ABP reduces to PIT of a product of ROABPs.
- A hitting set \mathcal{H} is a division algebra hitting set if $\mathcal{H} \in D^{n}$ for some division algebra D. Any division algebra hitting set is a strong hitting set.

Our Approach

- Intuitively, a division algebra is a matrix algebra where we can always do additions, multiplications and divisions.
- We can define an ABP (or an automaton) over a division algebra D where the edge labels are of form $\sum p_{i} x_{i} q_{i}$ for some $p_{i}, q_{i} \in D$.
- Constructing a strong hitting set for a division algebra ABP reduces to PIT of a product of ROABPs.
- A hitting set \mathcal{H} is a division algebra hitting set if $\mathcal{H} \in D^{n}$ for some division algebra D. Any division algebra hitting set is a strong hitting set.
- Refined goal is to compute a division algebra hitting set for noncommutative formulas.

Our Approach

PIT of ROABP

ROABP :

Figure: a bivariate ROABP

PIT of ROABP

ROABP :

Figure: a bivariate ROABP

- Hitting set generator: A polynomial map $\mathcal{G}: \mathbb{F}^{t} \rightarrow \mathbb{F}^{n}$ is a generator for a circuit class C if for every n-variate polynomial f in $C, f \equiv 0$ if and only if the t-variate polynomial $f \circ \mathcal{G} \equiv 0$.

PIT of ROABP

ROABP :

Figure: a bivariate ROABP

- Hitting set generator: A polynomial map $\mathcal{G}: \mathbb{F}^{t} \rightarrow \mathbb{F}^{n}$ is a generator for a circuit class C if for every n-variate polynomial f in $C, f \equiv 0$ if and only if the t-variate polynomial $f \circ \mathcal{G} \equiv 0$.

Noncommutative PIT

- [Forbes and Shpilka (2013)] For a D-variate ROABP, we can construct a hitting set generator $\mathcal{G}: \mathbb{F}^{\log D} \rightarrow \mathbb{F}^{D}$, therefore a hitting set of quasi-polynomial size.

Noncommutative PIT

- [Forbes and Shpilka (2013)] For a D-variate ROABP, we can construct a hitting set generator $\mathcal{G}: \mathbb{F}^{\log D} \rightarrow \mathbb{F}^{D}$, therefore a hitting set of quasi-polynomial size.
- The main idea is to merge the adjacent layers and reduce the number of variables.

Noncommutative PIT

- [Forbes and Shpilka (2013)] For a D-variate ROABP, we can construct a hitting set generator $\mathcal{G}: \mathbb{F}^{\log D} \rightarrow \mathbb{F}^{D}$, therefore a hitting set of quasi-polynomial size.
- The main idea is to merge the adjacent layers and reduce the number of variables.
- Noncommutative ABP PIT via commutative ROABP PIT by the following matrix substitutions.

$$
M_{i}=\left[\begin{array}{ccccc}
0 & z_{1}^{i} & 0 & \cdots & 0 \\
0 & 0 & z_{2}^{i} & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & z_{d}^{i} \\
0 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

Noncommutative PIT

- [Forbes and Shpilka (2013)] For a D-variate ROABP, we can construct a hitting set generator $\mathcal{G}: \mathbb{F}^{\log D} \rightarrow \mathbb{F}^{D}$, therefore a hitting set of quasi-polynomial size.
- The main idea is to merge the adjacent layers and reduce the number of variables.
- Noncommutative ABP PIT via commutative ROABP PIT by the following matrix substitutions.

$$
M_{i}=\left[\begin{array}{ccccc}
0 & z_{1}^{i} & 0 & \cdots & 0 \\
0 & 0 & z_{2}^{i} & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & z_{d}^{i} \\
0 & 0 & \cdots & 0 & 0
\end{array}\right], \quad f\left(M_{1}, \ldots, M_{n}\right)=
$$

$$
\star .
$$

Cyclic Division Algebra

$F: \mathbb{Q}(z) \quad$ where z is a new commuting indeterminate.

Cyclic Division Algebra

$F: \mathbb{Q}(z) \quad$ where z is a new commuting indeterminate. $K: F(\omega) \quad$ where $\omega: \ell^{t h}$ primitive roots of unity $\left(\omega^{\ell}=1\right)$.

Cyclic Division Algebra

$F: \mathbb{Q}(z) \quad$ where z is a new commuting indeterminate.
$K: F(\omega) \quad$ where $\omega: \ell^{\text {th }}$ primitive roots of unity $\left(\omega^{\ell}=1\right)$.
$\sigma(\omega)=\omega^{k}$ where k is relatively prime to $\ell(\sigma: K \rightarrow K$ is an automorphism that fixes F).

Cyclic Division Algebra

$F: \mathbb{Q}(z) \quad$ where z is a new commuting indeterminate.
$K: F(\omega) \quad$ where $\omega: \ell^{\text {th }}$ primitive roots of unity $\left(\omega^{\ell}=1\right)$.
$\sigma(\omega)=\omega^{k}$ where k is relatively prime to $\ell(\sigma: K \rightarrow K$ is an automorphism that fixes F).

$$
M=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
z & 0 & \cdots & 0 & 0
\end{array}\right]
$$

Cyclic Division Algebra

$F: \mathbb{Q}(z) \quad$ where z is a new commuting indeterminate.
$K: F(\omega) \quad$ where $\omega: \ell^{\text {th }}$ primitive roots of unity $\left(\omega^{\ell}=1\right)$.
$\sigma(\omega)=\omega^{k}$ where k is relatively prime to $\ell(\sigma: K \rightarrow K$ is an automorphism that fixes F).

$$
M=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
z & 0 & \cdots & 0 & 0
\end{array}\right], \quad N=\left[\begin{array}{ccccc}
\omega & 0 & 0 & 0 & 0 \\
0 & \sigma(\omega) & 0 & 0 & 0 \\
0 & 0 & \ddots & 0 & 0 \\
0 & 0 & 0 & \sigma^{\ell-2}(\omega) & 0 \\
0 & 0 & 0 & 0 & \sigma^{\ell-1}(\omega)
\end{array}\right] .
$$

Cyclic Division Algebra

$F: \mathbb{Q}(z) \quad$ where z is a new commuting indeterminate.
$K: F(\omega) \quad$ where $\omega: \ell^{\text {th }}$ primitive roots of unity $\left(\omega^{\ell}=1\right)$.
$\sigma(\omega)=\omega^{k}$ where k is relatively prime to $\ell(\sigma: K \rightarrow K$ is an automorphism that fixes F).

$$
M=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
z & 0 & \cdots & 0 & 0
\end{array}\right], \quad N=\left[\begin{array}{ccccc}
\omega & 0 & 0 & 0 & 0 \\
0 & \sigma(\omega) & 0 & 0 & 0 \\
0 & 0 & \ddots & 0 & 0 \\
0 & 0 & 0 & \sigma^{\ell-2}(\omega) & 0 \\
0 & 0 & 0 & 0 & \sigma^{\ell-1}(\omega)
\end{array}\right] .
$$

$D: F$-linear combination of $M^{i} N^{j}(w \log 0 \leq i, j \leq \ell-1)$.
$D=(K / F, \sigma, z):$ Cyclic division algebra of index ℓ.

Division Algebra HS for noncommutative formulas

Matrix representation of a division algebra element:

$$
\left[\begin{array}{ccccc}
0 & b & 0 & \cdots & 0 \\
0 & 0 & \sigma(b) & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \sigma^{\ell-2}(b) \\
z \sigma^{\ell-1}(b) & 0 & \cdots & 0 & 0
\end{array}\right]
$$

Matrix representation of Forbes-Shpilka hitting set:

$$
\left[\begin{array}{ccccc}
0 & f_{1}^{i}(\bar{\alpha}) & 0 & \cdots & 0 \\
0 & 0 & f_{2}^{i}(\bar{\alpha}) & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & f_{D}^{i}(\bar{\alpha}) \\
0 & 0 & \cdots & 0 & 0
\end{array}\right] .
$$

Division Algebra HS for noncommutative formulas

Matrix representation of a division algebra element:

$$
\left[\begin{array}{ccccc}
0 & b & 0 & \cdots & 0 \\
0 & 0 & \sigma(b) & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \sigma^{\ell-2}(b) \\
z \sigma^{\ell-1}(b) & 0 & \cdots & 0 & 0
\end{array}\right]
$$

Matrix representation of Forbes-Shpilka hitting set:

$$
\left[\begin{array}{ccccc}
0 & f_{1}^{i}(\bar{\alpha}) & 0 & \cdots & 0 \\
0 & 0 & f_{2}^{i}(\bar{\alpha}) & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & f_{D}^{i}(\bar{\alpha}) \\
0 & 0 & \cdots & 0 & 0
\end{array}\right] .
$$

The goal is to find ω and σ such that each $f_{j}(\bar{\alpha})$ is in $K=F(\omega)$ and $\sigma\left(f_{j}(\bar{\alpha})\right)=f_{j+1}(\bar{\alpha})$.

Division Algebra HS for noncommutative formulas

Matrix representation of our hitting set over $\mathbb{Q}(\omega, z)$:

$$
M\left(x_{i}\right)=\left[\begin{array}{ccccc|ccc}
0 & f_{0}^{i}(\bar{\alpha}) & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & f_{1}^{i}(\bar{\alpha}) & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & f_{D-1}^{i}(\bar{\alpha}) & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & f_{D}^{i}(\bar{\alpha}) & \cdots & 0 \\
\hline \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & \cdots & f_{\ell-2}^{i}(\bar{\alpha}) \\
z f_{\ell-1}^{i}(\bar{\alpha}) & 0 & 0 & \cdots & 0 & 0 & \cdots & 0
\end{array}\right] .
$$

Strong HS for a division algebra ABP

- Every nonzero generalized ABP over a division algebra has a witness of form:

$$
M\left(x_{k}\right)=\left[\begin{array}{ccccc}
0 & p_{k 1} & 0 & \cdots & 0 \\
0 & 0 & p_{k 2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & p_{k(d-1)} \\
p_{k d} & 0 & \cdots & 0 & 0
\end{array}\right]
$$

- Write each $p_{k l}=\sum y_{i j k l} C_{i j}$ where $C_{i j} s$ are the division algebra basis.

Strong HS for a division algebra ABP

- Every nonzero generalized ABP over a division algebra has a witness of form:

$$
M\left(x_{k}\right)=\left[\begin{array}{ccccc}
0 & p_{k 1} & 0 & \cdots & 0 \\
0 & 0 & p_{k 2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & p_{k(d-1)} \\
p_{k d} & 0 & \cdots & 0 & 0
\end{array}\right]
$$

- Write each $p_{k l}=\sum y_{i j k l} C_{i j}$ where $C_{i j} s$ are the division algebra basis.
- Image will be a block diagonal matrix and for each block, the matrix entry will be an ROABP over same partition.

Strong HS for a division algebra ABP

- Every nonzero generalized ABP over a division algebra has a witness of form:

$$
M\left(x_{k}\right)=\left[\begin{array}{ccccc}
0 & p_{k 1} & 0 & \cdots & 0 \\
0 & 0 & p_{k 2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & p_{k(d-1)} \\
p_{k d} & 0 & \cdots & 0 & 0
\end{array}\right]
$$

- Write each $p_{k l}=\sum y_{i j k l} C_{i j}$ where $C_{i j} s$ are the division algebra basis.
- Image will be a block diagonal matrix and for each block, the matrix entry will be an ROABP over same partition.
- Finding invertible image reduces to ROABP PIT.

Our Approach

Why do we stop at height two?

- Inductively build a hitting set for formulas of height h for every h (need more).

Why do we stop at height two?

- Inductively build a hitting set for formulas of height h for every h (need more).
- Inductively build a strong hitting set for formulas of height h for every h (don't know).

Why do we stop at height two?

- Inductively build a hitting set for formulas of height h for every h (need more).
- Inductively build a strong hitting set for formulas of height h for every h (don't know).
- Inductively build a division algebra hitting set for formulas of height h for every h (don't know).

Why do we stop at height two?

- Inductively build a hitting set for formulas of height h for every h (need more).
- Inductively build a strong hitting set for formulas of height h for every h (don't know).
- Inductively build a division algebra hitting set for formulas of height h for every h (don't know).
- Suffices to find a division algebra hitting set for a division algebra ABP.

Why do we stop at height two?

- Inductively build a hitting set for formulas of height h for every h (need more).
- Inductively build a strong hitting set for formulas of height h for every h (don't know).
- Inductively build a division algebra hitting set for formulas of height h for every h (don't know).
- Suffices to find a division algebra hitting set for a division algebra ABP.

Can we embed the strong hitting set inside a larger dimensional division algebra and continue the induction?

Thank You

