Algebraic circuit size lower bounds for restricted circuits, in a functional setting

Suryajith Chillara

INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY
H Y D E R A B A D

$$
\begin{aligned}
& \text { WACT } 2023 \\
& 28.03 .2023
\end{aligned}
$$

Algebraic/Arithmetic circuits

An Arithmetic Circuit is a directed acyclic graph where

- leaf nodes: labelled by constants or variables,
- internal nodes: labelled by either \times or + ,
- edges: labelled by constants.

Circuit size: number of nodes present in it. [Measure of complexity]

Circuit depth: length of the longest leaf to root path. [Measure of parallelizability]

Formulas: circuits where computations are not reused, i.e., directed tree.

Best known general lower bounds

- Existential circuit size lower bound: $\Omega\left(\sqrt{\binom{N+\mathrm{d}}{\mathrm{d}}}\right)$ [Folklore].
- Explicit circuit size lower bound: $\Omega(\mathrm{N} \log \mathrm{N})$ [Baur and Strassen, TCS 1983].
- Explicit formula size lower bound: $\Omega\left(\mathrm{N}^{2}\right)$ [Kalorkoti, SICOMP 1985].

Circuit size lower bounds are known for restricted arithmetic circuits.

Simplifications considered

Functional lower bounds

Functionally equivalent (denoted by $\equiv \equiv_{\mathrm{fn}}^{\mathrm{B}}$)

$$
\mathrm{P} \equiv_{\mathrm{fn}}^{\mathrm{B}} \mathrm{Q} \text { if } \mathrm{P}(\mathrm{a})=\mathrm{Q}(\mathrm{a}) \forall \mathrm{a} \in \mathrm{~B}^{\mid \mathrm{XX}} .
$$

Functional Lower Bounds
The evaluation table (over B^{N}) of any circuit in \mathcal{C} of size at most s , is not equal to that of P .

Further, if $\mathrm{P} \equiv_{\text {fn }}^{\mathrm{B}} \mathrm{Q}$ then
$\mathrm{P} \not \not_{\mathrm{fn}} \operatorname{ASIZE}(\mathrm{s}) \quad \Longrightarrow \quad \mathrm{Q} \not \mathrm{ffn} \operatorname{ASIZE}(\mathrm{s})$.

Previously known functional lower bounds

- All the lower bounds known in the (set-)multilinear setting.

Previously known functional lower bounds

- All the lower bounds known in the (set-)multilinear setting.
- Over $\mathbb{F}_{\mathrm{O}(1)}$, exponential bounds against $\Sigma \Pi \Sigma$ circuits

Previously known functional lower bounds

- All the lower bounds known in the (set-)multilinear setting.
- Over $\mathbb{F}_{\mathrm{O}(1)}$, exponential bounds against $\Sigma \Pi \Sigma$ circuits
- [Grigoriev and Karpinski, STOC 1998],

Previously known functional lower bounds

- All the lower bounds known in the (set-)multilinear setting.
- Over $\mathbb{F}_{\mathrm{O}(1)}$, exponential bounds against $\Sigma \Pi \Sigma$ circuits
- [Grigoriev and Karpinski, STOC 1998],
- [Grigoriev and Razborov, FOCS 1998], and

Previously known functional lower bounds

- All the lower bounds known in the (set-)multilinear setting.
- Over $\mathbb{F}_{\mathrm{O}_{(1)}}$, exponential bounds against $\Sigma \Pi \Sigma$ circuits
- [Grigoriev and Karpinski, STOC 1998],
- [Grigoriev and Razborov, FOCS 1998], and
- [C. and Mukhopadhyay, Inf\&Comp. 2017].

Previously known functional lower bounds

- All the lower bounds known in the (set-)multilinear setting.
- Over $\mathbb{F}_{\mathrm{O}(1)}$, exponential bounds against $\Sigma \Pi \Sigma$ circuits
- [Grigoriev and Karpinski, STOC 1998],
- [Grigoriev and Razborov, FOCS 1998], and
- [C. and Mukhopadhyay, Inf\&Comp. 2017].
- Exponential bound against homogeneous $\Sigma \Pi \Sigma \Pi \Sigma$ circuits over $\mathbb{F}_{\mathrm{O}(1)}$ [Kumar and Saptharishi, CCC 2016].

Previously known functional lower bounds

- All the lower bounds known in the (set-)multilinear setting.
- Over $\mathbb{F}_{\mathrm{O}(1)}$, exponential bounds against $\Sigma \Pi \Sigma$ circuits
- [Grigoriev and Karpinski, STOC 1998],
- [Grigoriev and Razborov, FOCS 1998], and
- [C. and Mukhopadhyay, Inf\&Comp. 2017].
- Exponential bound against homogeneous $\Sigma \Pi \Sigma \Pi \Sigma$ circuits over $\mathbb{F}_{\mathrm{O}(1)}$ [Kumar and Saptharishi, CCC 2016].
- Restricted depth four and depth three circuits [Forbes, Kumar and Saptharishi, CCC 2016].

Boolean parts of polynomials

Boolean part of a polynomial
For a polynomial P , let $\mathrm{BP}(\mathrm{P})$ be the Boolean function that simulates the evaluations of P over $\{0,1\}^{\mathrm{N}}$.

Boolean parts of polynomials

Boolean part of a polynomial
For a polynomial P, let $\mathrm{BP}(\mathrm{P})$ be the Boolean function that simulates the evaluations of P over $\{0,1\}^{\mathrm{N}}$.

Boolean part of a class \mathcal{C}
For a circuit $C \in \mathcal{C}$, let $\mathrm{BP}(\mathrm{C})$ be the boolean circuit that simulates the evaluation of C over $\{0,1\}^{\mathrm{N}}$.

$$
\mathrm{BP}(\mathcal{C})=\{\mathrm{BP}(\mathrm{C}) \mid \mathrm{C} \in \mathcal{C}\} .
$$

Path to boolean lower bounds

Theorem [Bürgisser, TCS 2000]

1. (GRH) Over large fields,
$-\mathrm{FNC}^{1} /$ poly $\subseteq \mathrm{BP}(\mathrm{VP}) \subseteq \mathrm{FNC}^{3} /$ poly and
$-\# \mathrm{P} /$ poly $\subseteq \mathrm{BP}(\mathrm{VNP}) \subseteq \mathrm{FP}^{\# P} /$ poly
2. For fixed size finite fields,
$-\mathrm{FNC}^{1} /$ poly $\subseteq \mathrm{BP}(\mathrm{VP}) \subseteq \mathrm{FNC}^{2} /$ poly and
$-\# \mathrm{P} /$ poly $=\mathrm{BP}(\mathrm{VNP})$

Constant depth Boolean circuits

ACC ${ }^{0}$
Constant depth circuits with AND, OR, NOT and MOD gates.

Constant depth Boolean circuits

ACC ${ }^{0}$
Constant depth circuits with AND, OR, NOT and MOD gates.

Theorem [Allender and Gore, SICOMP 1994]

Perm \notin Uniform-ACC ${ }^{0}$.

Constant depth Boolean circuits

ACC ${ }^{0}$
Constant depth circuits with AND, OR, NOT and MOD gates.

Theorem [Allender and Gore, SICOMP 1994]

$$
\text { Perm } \notin \text { Uniform-ACC }{ }^{0}
$$

Theorem [Williams, J.ACM 2014]

$$
\text { NEXP } \nsubseteq \text { Non-uniform-ACC }{ }^{0}
$$

Constant depth Boolean circuits

ACC ${ }^{0}$
Constant depth circuits with AND, OR, NOT and MOD gates.

Theorem [Allender and Gore, SICOMP 1994]

$$
\text { Perm } \notin \text { Uniform-ACC }{ }^{0}
$$

Theorem [Williams, J.ACM 2014]

$$
\text { NEXP } \nsubseteq \text { Non-uniform-ACCº }
$$

Theorem [Murray and Williams, SICOMP 2020]

NQP \nsubseteq Non-uniform-ACC ${ }^{0}$.

Characterization for ACC°

Theorem [Yao, FOCS 1985; Beigel-Tarui, CC 1994]

Every language L in the class ACC^{0} can be recognized by a family of depth two deterministic circuits with a symmetric function gate at the root and $2^{\log ^{\circ(1)} \mathrm{n}}$ many AND gates of fan-in $\log ^{O(1)} \mathrm{n}$.

Observation

Observation [Forbes, Kumar and Saptharishi, CCC 2016]
Over $\{0,1\}^{\mathrm{N}}$, any function F in ACC^{0} can also be computed algebraically as follows.

$$
F(X)=\sum_{i=1}^{s}\left(Q_{i}(X)\right)^{d_{i}} .
$$

where s and each d_{i} are at most $2^{\log ^{0(1)} n}$. Further, monomials of Q_{i} 's are supported on at most $\log ^{\mathrm{O}(1)} \mathrm{n}$ variables.

Observation

Observation [Forbes, Kumar and Saptharishi, CCC 2016]
Over $\{0,1\}^{\mathrm{N}}$, any function F in ACC^{0} can also be computed algebraically as follows.

$$
F(X)=\sum_{i=1}^{s}\left(Q_{i}(X)\right)^{d_{i}} .
$$

where s and each d_{i} are at most $2^{\log ^{0(1)} n}$. Further, monomials of Q_{1} 's are supported on at most $\log ^{\mathrm{O}(1)} \mathrm{n}$ variables.

We denote such expressions by $\Sigma \wedge \Sigma \Pi$.

An approach towards ACC^{0} lower bounds

A strategy
Show that there exists a function F such that

- the evaluation table of $\mathrm{F} \neq$ evaluation table of any "small" $\Sigma \wedge \Sigma \Pi$ expressions, and
- F is computable in a class that is not "much larger" than ACC^{0}.

An approach towards ACC^{0} lower bounds

A strategy
Show that there exists a function F such that

- the evaluation table of $\mathrm{F} \neq$ evaluation table of any "small" $\Sigma \wedge \Sigma \Pi$ expressions, and
- F is computable in a class that is not "much larger" than $A C C^{0}$.

Our result
There is a function F such that

- F is computable in GapL, and
- the evaluation table of F is not equal to the evaluation table of any "small" and "bounded individual degree" $\Sigma \wedge \Sigma \Pi$ expressions.

Our results

Main result
There is a function F such that

- F is computable in GapL, and
- the evaluation table of $\mathrm{F} \neq$ evaluation table of any "small" and "bounded individual degree" $\Sigma \wedge \Sigma \Pi$ expressions.

Our results

Main result
There is a function F such that

- F is computable in GapL, and
- the evaluation table of $\mathrm{F} \neq$ evaluation table of any "small" and "bounded individual degree" $\Sigma \wedge \Sigma \Pi$ expressions.

This result is obtained by proving "functional" size lower bounds against restricted arithmetic circuits of depth four.

Bird's eye view of proof

Bird's eye view of proof

Step 1

There is an explicit polynomial P such that it is not functionally equivalent to polynomials of bounded individual degree that are computed by "small" $\Sigma \wedge \Sigma \Pi$ circuits.

Bird's eye view of proof

Step 1

There is an explicit polynomial P such that it is not functionally equivalent to polynomials of bounded individual degree that are computed by "small" $\Sigma \wedge \Sigma \Pi$ circuits.

Step 2

Show that there is a function $F \in G a p L$ that simulates the evaluation of P over $\{0,1\}^{\mathrm{N}}$.

Iterated Matrix Multiplication polynomial

$$
\begin{aligned}
\mathrm{I} \mathrm{MM}_{\mathrm{n}, \mathrm{~d}} & =\sum_{(\mathrm{s} \rightsquigarrow \mathrm{t}) \text { paths } \pi} \mathrm{Wt}(\pi) \\
& =\sum_{\pi_{1}, \ldots, \pi_{\mathrm{d}} \in[\mathrm{n}]} \mathrm{x}_{1, \pi_{1}}^{(1)} \cdot \mathrm{x}_{\pi_{1}, \pi_{2}}^{(2)} \cdot \ldots \cdot \mathrm{x}_{\pi_{\mathrm{d}-1}, 1}^{(\mathrm{d})}
\end{aligned}
$$

IMM $\mathrm{n}_{\mathrm{n}, \mathrm{d}}$ is the $(1,1)$ entry in the product of adjacency matrices $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{d}}$.
$\left\{I M M_{n, d}\right\}_{n, d \geqslant 0} \in V P$ and has a depth four circuit of size $n^{\circ}(\sqrt{d})$.

Step 1: Broad theme of the proof

Define a suitable complexity measure $\Gamma: \mathbb{F}[\mathrm{X}] \mapsto \mathbb{R}$ such that the following holds:

- For any polynomial f that is computed by a "small" circuit, $\Gamma(\mathrm{f})$ is "small".
- For the target polynomial $\mathrm{P}, \Gamma(\mathrm{P})$ is "large".

Step 1: Broad theme of the proof

Define a suitable complexity measure $\Gamma: \mathbb{F}[\mathrm{X}] \mapsto \mathbb{R}$ such that the following holds:

- For any polynomial f that is computed by a "small" circuit, $\Gamma(\mathrm{f})$ is "small".
- For the target polynomial $\mathrm{P}, \Gamma(\mathrm{P})$ is "large".

Multilinear Shifted Evaluation Dimension (denoted by $\left.\operatorname{mSED}_{\mathrm{k}, \ell}^{[Y, Z]}(\mathrm{P}(\mathrm{Y}, \mathrm{Z}))\right)$
$\operatorname{dim}\left(\operatorname{Eval}_{\{0,1\}^{|z|}}\left\{\operatorname{mult}\left(\mathrm{Z}^{=\ell} \cdot \mathbb{F}-\right.\right.\right.$ span $\left.\left.\left.\left\{\mathrm{P}(\mathrm{a}, \mathrm{Z}) \mid \mathrm{a} \in\{0,1\}_{\leqslant k}^{|\mathrm{Y}|}\right\}\right)\right\}\right)$

Based on the measure of Shifted Evaluation Dimension, of [Forbes, Kumar, and Saptharishi, CCC 2016]

Evaluation Dimension

Let $\rho: \mathrm{X} \mapsto \mathrm{Y} \sqcup \mathrm{Z}$ be a partitioning function.

$$
M_{\rho}(P):
$$

Evaluation Dimension of P wrt ρ is $\operatorname{rank}\left(M_{\rho}(P)\right)$.

Evaluation Dimension

Let $\rho: \mathrm{X} \mapsto \mathrm{Y} \sqcup \mathrm{Z}$ be a partitioning function.

Evaluation Dimension of P wrt ρ is $\operatorname{rank}\left(\mathrm{M}_{\rho}(\mathrm{P})\right)$.
Further,
$\operatorname{rank}\left(M_{\rho}(P)\right)=\operatorname{dim}\left(\operatorname{Eval}_{\{0,1\}^{|z|}}\left(\mathbb{F}-\right.\right.$ span $\left.\left.\left\{P(a, Z) \mid a \in\{0,1\}^{|Y|}\right\}\right)\right)$.

Evaluation Dimension

Let $\rho: \mathrm{X} \mapsto \mathrm{Y} \sqcup \mathrm{Z}$ be a partitioning function.

Evaluation Dimension of P wrt ρ is $\operatorname{rank}\left(\mathrm{M}_{\rho}(\mathrm{P})\right)$.
Further,
$\operatorname{rank}_{\leqslant k}\left(M_{\rho}(P)\right)=\operatorname{dim}\left(\operatorname{Eval}_{\{0,1\}^{|z|}}\left(\mathbb{F}-\operatorname{span}\left\{P(a, Z) \mid a \in\{0,1\}_{\leqslant k}^{|Y|}\right\}\right)\right)$.

Partial derivatives as a proxy

- For a set-multilinear polynomial P and $a \in\{0,1\}_{\leqslant k}^{\|Y\|}$,

$$
\frac{\partial^{\mathrm{k}} \mathrm{P}}{\partial Y^{\mathrm{a}}}=\mathrm{P}(\mathrm{a}, \mathrm{Z})
$$

- For a polynomial Q of individual-degree at most r,

$$
\mathbb{F} \text {-span }\left\{\mathrm{Q}(\mathrm{a}, \mathrm{Z}) \mid \mathrm{a} \in\{0,1\}_{\leqslant k}^{|\mathrm{Y}|}\right\} \subseteq \mathbb{F} \text {-span }\left\{\left.(\partial \leqslant \mathrm{r} \cdot \mathrm{k} \mathrm{Q})\right|_{\mathrm{Y}=0}\right\} .
$$

Evolved measures

- Shifted Evaluation Dimension [Forbes, Kumar and Saptharishi, CCC 2016]:

$$
\operatorname{dim}\left(\operatorname{Eval}_{\{0,1\}^{|z|}}\left\{\mathrm{Z}^{=\ell} \cdot \mathbb{F}-\operatorname{span}\left\{\mathrm{P}(\mathrm{a}, \mathrm{Z}) \mid \mathrm{a} \in\{0,1\}_{\leqslant k}^{|\mathrm{Y}|}\right\}\right\}\right)
$$

- Multilinear Shifted Evaluation Dimension [Our work]:
$\operatorname{dim}\left(\operatorname{Eval}_{\{0,1\}^{|Z|}}\left\{\operatorname{mult}\left(Z^{=\ell} \cdot \mathbb{F}\right.\right.\right.$-span $\left.\left.\left.\left\{P(a, Z) \mid a \in\{0,1\}_{\leqslant k}^{|Y|}\right\}\right)\right\}\right)$

Formal statement

Main Theorem

Let n be a large integer and d, k and r be such that

- $\omega\left(\log ^{2} n\right) \leqslant d \leqslant n^{0.01}$ and
- $\mathrm{r} \leqslant \frac{\mathrm{d}}{1201 \mathrm{k}^{2}}$.

Any depth four $\Sigma \wedge \Sigma \Pi$ circuit of bounded individual degree r computing a function equivalent to $\mathrm{IMM}_{\mathrm{n}, \mathrm{d}}$ on $\{0,1\}^{\mathrm{n}^{2} \mathrm{~d}}$, must have size at least $\mathrm{n}^{\Omega(\mathrm{k})}$.

Step 2

Theorem [Vinay, CCC 1991]
Evaluation of $I M M_{n, d}$ over $\{0,1\}^{\mathrm{n}^{2} \mathrm{~d}}$ can be simulated in GapL.

Our result

Main Theorem
Let n be a large integer and d, k and r be such that

- $\omega\left(\log ^{2} n\right) \leqslant \mathrm{d} \leqslant \mathrm{n}^{0.01}$ and
- $r \leqslant \frac{d}{1201 k^{2}}$.

Any depth four $\Sigma \wedge \Sigma \Pi$ circuit of bounded individual degree r computing a function equivalent to $\mathrm{IMM}_{\mathrm{n}, \mathrm{d}}$ on $\{0,1\}^{\mathrm{n}^{2} \mathrm{~d}}$, must have size at least $\mathrm{n}^{\Omega(\mathrm{k})}$.
"Improving" this result could lead us to a separation of ACC^{0} from GapL.

Other results and related work

Circuit model	Work	Poly	Lower Bound	Range of parameters
$(\Sigma \wedge \Sigma \Pi) \leqslant r$	This work	$\mathrm{IMM}_{\mathrm{n}, \mathrm{d}}$	$\mathrm{n}^{\Omega(\mathrm{k})}$	$\omega\left(\log ^{2} \mathrm{n}\right) \leqslant \mathrm{d} \leqslant$ $\mathrm{n}^{0.01}$, and $\mathrm{r} \leqslant$ $\frac{\mathrm{d}}{1201 \mathrm{k}^{2}}$.
$\left.(\Sigma \Pi \Sigma \Pi)_{[\leqslant \mathrm{d}} \mathrm{s}\right]$	[FKS16]	NW ${ }_{\text {m,d }}$	$2^{\Omega(\sqrt{\text { d }} \log (\mathrm{md}))}$	$\begin{aligned} & \mathrm{m}=\Theta\left(\mathrm{d}^{2}\right), \text { and } \\ & \mathrm{r} \leqslant \mathrm{O}(1) . \end{aligned}$
$(\Sigma \Pi \Sigma \Pi)_{[\leqslant \mathrm{d}]}^{\leqslant \mathrm{l}}$	This work	$\mathrm{IMM}_{\mathrm{n}, \mathrm{d}}$	$\mathrm{n}^{\Omega\left(\sqrt{\frac{\mathrm{d}}{\mathrm{F}}}\right)}$	$\begin{aligned} & \omega\left(\log ^{2} n\right) \leqslant d \leqslant \\ & n^{0.01}, \text { and } r \leqslant \\ & \frac{\log n}{12} . \end{aligned}$

[FKS16] = [Forbes, Kumar and Saptharishi, CCC 2016].

Further observations

At least one of the following is true.

- There exists a multilinear polynomial which is "hard" for $\Sigma \wedge \Sigma \Pi$ circuits but can be evaluated using a "small" $\Sigma \wedge \Sigma \Pi$ circuits.
- $\mathrm{ACC}^{0} \subsetneq$ GapL.

Thank you!

