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We study complexity measures on complex homogeneous polynomials

f ∈ SdCN = C[x1, . . . , xN ]d .

Plan:
• Waring rank and border Waring rank

• Kumar’s product plus constant model

• Generalization to other complexity classes
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Waring rank and border Waring rank

The Waring rank of f is

WR(f ) = min
{
r : f = `d1 + · · ·+ `dr for some `j ∈ S1Cn

}
;

the border Waring rank of f is

WR(f ) = min
{
r : f = lim

ε→0
fε for a sequence fε with WR(fε) ≤ r

}
.

Clearly WR(f ) ≤WR(f ).
There are examples where the inequality is strict:

WR(xd−1y) = d

WR(xd−1y) = 2.
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Debordering border Waring rank

A debordering result for WR is an inequality of the form

(some complexity measure of f ) ≤ (some function of WR(f )).

Theorem. [Bläser-Dörfler-Ikenmeyer]

abpw(f ) ≤WR(f ).

Bold Conjecture.
For f ∈ SdCN , then WR(f ) ≤ O(d) ·WR(f ).

• True for small WR(f ):
[Sylvester, Segre, Buczynski-Landsberg, Ballico-Bernardi, Chiantini];

• True when WR(f ) nearly maximal:
[Blekherman-Teitler].
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Debordering border Waring rank - cont’d

Theorem. [DGIJL] For f ∈ SdCN , if WR(f ) = r , then

WR(f ) ≤ d ·

(
2r − 2
r − 1

)
.

Idea of the proof:

Three ingredients:
(i) We may assume f can be written in r variables.

(ii) We may assume deg(f ) ≥ r .

(iii) Generalized additive decompositions allow one to give bounds in this range.

Previously only general bounds were of the form WR(f ) ≤ O(d r ) or
WR(f ) ≤ O(rd) which is almost trivial using just “ingredient (i)”.
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Kumar’s product plus constant model

Let f ∈ C[x1, . . . , xN ]. The Kumar’s complexity of f is

Kc(f ) = min
{
r : f = α

(∏r
1(1+ `j)− 1

)
for some `j ∈ S1CN , α ∈ C

}
Example. Set ω = exp(2πi/d).

`d = (1+ ω0`) · · · (1+ ωd−1`)− 1 so Kc(`d) = d .

However Kc(f ) is not always finite. In fact, if f is homogeneous, then Kc(f ) is
finite if and only if f = `d .

The border Kumar’s complexity of f is

Kc(f ) = min
{
r : f = lim

ε→0
fε for a sequence fε with Kc(fε) ≤ r

}
Kc(f ) is finite for every polynomial f .
Theorem. [Kumar]
For f ∈ SdCN , one has Kc(f ) ≤ deg(f ) ·WR(f ).
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A converse of Kumar’s result
How good is the bound Kc(f ) ≤ deg(f ) ·WR(f )?

Example.
x1 · · · xn = lim

ε→0
εn
(∏n

1(1+
1
ε
xj)− 1

)
One has

Kc(x1 · · · xn) = n WR(x1 · · · xn) = 2n−1.

Except for this case, Kc is roughly equivalent to WR.

Theorem. [DGIJL]
For f ∈ SdCN , either f is a product of linear forms or

WR(f ) ≤ Kc(f ) ≤ deg(f ) ·WR(f ).
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Generalizing the product plus constant model

For i = 1, . . . , r , let Xi be an m ×m matrix of linear forms. Then

A = (idm + X1) · · · (idm + Xr )− idm

is a matrix whose entries are (non-homogeneous) polynomials of degree d
without constant term.

Idea: Fix m and define a complexity measure for f in terms of the value of r in
the expression of A.

We recover the completeness of ABPs of width 3 for VF [Ben-Or and Cleve].

Theorem. [DGIJL] If f ∈ SdCN has a formula of depth δ, then f can be
expressed as an entry of A for some r ≤ 4δ and m = 3.

8 / 10



Parity-alternating elementary symmetric functions

The d-th homogeneous component of A is

ed(X1, . . . ,Xr ),

the elementary symmetric polynomial in non-commuting variables.

Fix m = 2 and specialize Xi =
( 0 xi

0 0

)
if i is odd, Xi =

( 0 0
xi 0
)
if i is even. Let

C = ed(X1, . . . ,Xr ). One of the entries of C is

cr,d =
∑

(i1,...,id )
xi1 · · · xid

where the sum is over parity-alternating increasing sequences.

For f ∈ SdCN , define

rc(f ) = min{r : f = cr,d(`1, . . . , `r ) for some `i ∈ S1CN}

and let r c be the corresponding border complexity.

Theorem. [DGIJL]
VNP 6⊆ VQP if and only if r c(permm) grows super-quasipolynomially.
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What next?

• Debordering Waring rank:

• study the geometry of approximating curves;

• explore other models equivalent to Waring rank.

• Homogeneous polynomials defining complexity classes:

• GCT and obstructions;

• geometric methods for orbit-closures.
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