Monotone Complexity of Spanning Tree Polynomial Re-visited

Arkadev Chattopadhyay (TIFR, Mumbai), Rajit Datta (Goldman-Sachs), Utsab Ghosal (CMI), Partha Mukhopadhyay (CMI)

March 31, 2023

Summary

1 Basic Model of Computation

2 Strongly Exponential Lower Bound Against Monotone Circuits

3 -Sensitive Monotone Lower Bound

4 Summary and Open Problems

Basic Model of Computation

Arithmetic Circuits

Arithmetic Circuits

Arithmetic Circuits

- Monotone Circuits : Only non-negative scalars are allowed on edges. They naturally compute monotone polynomials.
$f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(2 x_{1}+3 x_{2}+5 x_{3}+5 x_{4}\right)\left(x_{2}+x_{3}\right)$

Monotone Computation

Important monotone polynomials:

Monotone Computation

Important monotone polynomials:

$$
S_{n, k}=\sum_{\substack{S \in[n] \\|S|=k}} \prod_{i \in S} x_{i}
$$

Monotone Computation

Important monotone polynomials:

$$
S_{n, k}=\sum_{\substack{S \in[n] \\|S|=k}} \prod_{i \in S} x_{i}
$$

$$
\operatorname{Perm}_{n \times n}=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

Monotone Computation

Important monotone polynomials:

$$
S_{n, k}=\sum_{\substack{S \in[n] \\|S|=k}} \prod_{i \in S} x_{i}
$$

$$
\operatorname{Perm}_{n \times n}=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

Monotone Computation

Important monotone polynomials:

$$
\begin{gathered}
S_{n, k}=\sum_{\substack{S \in[n] \\
|S|=k}} \prod_{i \in S} x_{i} \\
\text { Perm }_{n \times n}=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}
\end{gathered}
$$

Monotone circuits are universal for monotone polynomials.

$$
f=\sum \alpha_{m} m, \alpha_{m} \geq 0
$$

Monotone Computation

Important monotone polynomials:

$$
S_{n, k}=\sum_{\substack{S \in[n] \\|S|=k}} \prod_{i \in S} x_{i}
$$

$$
\operatorname{Perm}_{n \times n}=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

Monotone circuits are universal for monotone polynomials.

$$
f=\sum \alpha_{m} m, \alpha_{m} \geq 0
$$

Monotone Computation

Important monotone polynomials:

$$
S_{n, k}=\sum_{\substack{S \in[n] \\|S|=k}} \prod_{i \in S} x_{i}
$$

$$
\operatorname{Perm}_{n \times n}=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

Monotone Computation

Important monotone polynomials:
$S_{n, k}$ has an efficient monotone circuit.

$$
\operatorname{Perm}_{n \times n}=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

Monotone Computation

Important monotone polynomials:
$S_{n, k}$ has an efficient monotone circuit.

$$
\begin{gathered}
S_{n, k}=\sum_{\substack{S \in[n] \\
|S|=k}} \prod_{i \in S} x_{i} \\
\operatorname{Perm}_{n \times n}=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}
\end{gathered}
$$

Monotone Computation

Important monotone polynomials:

$$
S_{n, k}=\sum_{\substack{S \in[n] \\|S|=k}} \prod_{i \in S} x_{i}
$$

$$
\operatorname{Perm}_{n \times n}=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

Monotone Computation

Important monotone polynomials:

$$
S_{n, k}=\sum_{\substack{S \in[n] \\|S|=k}} \prod_{i \in S} x_{i}
$$

- Number of variables in Perm $_{n \times n}$ is n^{2}.

$$
\operatorname{Perm}_{n \times n}=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

Monotone Computation

Important monotone polynomials:

$$
S_{n, k}=\sum_{\substack{S \in[n] \\|S|=k}} \prod_{i \in S} x_{i}
$$

- Number of variables in Perm $n \times n$ is n^{2}.
- $\mathrm{Ckt}^{+}-\operatorname{size}\left(\operatorname{Perm}_{n \times n}\right) \geq 2^{\Omega(n)}$.

$$
\operatorname{Perm}_{n \times n}=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

Monotone Computation

Important monotone polynomials:

$$
S_{n, k}=\sum_{\substack{S \in[n] \\|S|=k}} \prod_{i \in S} x_{i}
$$

$$
\operatorname{Perm}_{n \times n}=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

- Number of variables in Perm $n \times n$ is n^{2}.
- $\mathrm{Ckt}^{+}-\operatorname{size}\left(\operatorname{Perm}_{n \times n}\right) \geq 2^{\Omega(n)}$.
- The known u.b. for Perm $n \times n$ is $2^{O(n \log n)}$.

Monotone Computations

$$
\begin{aligned}
& \text { Is there a monotone polynomial on } n \text { variables that has monotone circuit } \\
& \text { lower bounds of } 2^{\Omega(n)} \text {, i.e. strongly exponential ? }
\end{aligned}
$$

Monotone Computations

$$
\begin{aligned}
& \text { Is there a monotone polynomial on } n \text { variables that has monotone circuit } \\
& \text { lower bounds of } 2^{\Omega(n)} \text {, i.e. strongly exponential ? }
\end{aligned}
$$

Remark

Perm is not a candidate.

Strongly Exponential Lower Bound Against Monotone Circuits

Known Results

Strongly exp. lower bound

- Cavalar-Kumar-Rossman (2020)
- Hrubeš-Yehudayoff (2021)

Known Results

Strongly exp. lower bound

■ Gashkov-Sergeev (80's).
■ Raz-Yehudayoff (2009).

- Srinivasan (2019)
- Cavalar-Kumar-Rossman (2020).

■ Hrubeš-Yehudayoff (2021)

Known Results

Strongly exp. lower bound

- Gashkov-Sergeev (80's).
- Raz-Yehudayoff (2009).

All polynomials are in VNP.

- Srinivasan (2019)
- Cavalar-Kumar-Rossman (2020).

■ Hrubeš-Yehudayoff (2021)

Known Results

Strongly exp. lower bound

■ Gashkov-Sergeev (80's).

- Raz-Yehudayoff (2009).

All polynomials are in VNP.

- Srinivasan (2019)

Polynomials in VP ?

- Cavalar-Kumar-Rossman (2020).

■ Hrubeš-Yehudayoff (2021)

Known Results

- Valiant (1979).
- Jerrum-

Snir
(1982).

Known Results

- Valiant (1979).
- Jerrum-

$$
\text { Ckt- }{ }^{+} \operatorname{size}\left(f_{n}\right) \geq 2^{\Omega(\sqrt{n})} \text {. }
$$

Snir
(1982).

Known Results

- Valiant (1979).

■ Jerrum-

$$
\operatorname{Ckt-}{ }^{+} \operatorname{size}\left(f_{n}\right) \geq 2^{\Omega(\sqrt{n})} . \quad f_{n} \in \mathrm{VP} .
$$

Snir
(1982).

Known Results

- Valiant (1979).
- JerrumSnir (1982).
$f_{n} \in \mathrm{VP}$.
Ckt- ${ }^{+} \operatorname{size}\left(f_{n}\right) \geq 2^{\Omega(\sqrt{n})}$.
Any strongly exp. monotone lower bound for VP polynomial ?

Known Results

- Valiant (1979).
- JerrumSnir (1982).
$f_{n} \in \mathrm{VP}$.
Any strongly exp. monotone lower bound for VP polynomial ?

Yes!(Our result)

Our Result

Theorem:

The Spanning tree polynomial defined for a family of constant degree expander graphs on n vertices requires monotone circuits of size $2^{\Omega(n)}$.

Our Result

Theorem:

The Spanning tree polynomial defined for a family of constant degree expander graphs on n vertices requires monotone circuits of size $2^{\Omega(n)}$.

Remark

- Number of variables in our polynomial is $\Theta(n)$.

Our Result

Theorem:

The Spanning tree polynomial defined for a family of constant degree expander graphs on n vertices requires monotone circuits of size $2^{\Omega(n)}$.

Remark

- Number of variables in our polynomial is $\Theta(n)$.
- First strongly exp. monotone I.b for VP.

What is Spanning Tree Polynomial ?

What is Spanning Tree Polynomial ?

- $\mathrm{ST}_{3}=$

$$
x_{2,1} \cdot x_{3,1}+x_{2,3} \cdot x_{3,1}+x_{3,2} \cdot x_{2,1} .
$$

What is Spanning Tree Polynomial ?

- $\mathrm{ST}_{3}=$
$x_{2,1} \cdot x_{3,1}+x_{2,3} \cdot x_{3,1}+x_{3,2} \cdot x_{2,1}$.
- $x_{1,2} \cdot x_{3,2}$ is not a monomial in ST_{3}.

What is Spanning Tree Polynomial ?

- $G=(V, E),|V|=n$ is bi-directed.
- $\mathrm{ST}_{3}=$
$x_{2,1} \cdot x_{3,1}+x_{2,3} \cdot x_{3,1}+x_{3,2} \cdot x_{2,1}$.
- $x_{1,2} \cdot x_{3,2}$ is not a monomial in ST_{3}.

What is Spanning Tree Polynomial ?

- $G=(V, E),|V|=n$ is bi-directed.
- T is the set of maps from $[2, \ldots, n]$ to $[n]$ that gives spanning tree rooted at 1 .
- $\mathrm{ST}_{3}=$
$x_{2,1} \cdot x_{3,1}+x_{2,3} \cdot x_{3,1}+x_{3,2} \cdot x_{2,1}$.
- $x_{1,2} \cdot x_{3,2}$ is not a monomial in ST_{3}.

What is Spanning Tree Polynomial ?

- $G=(V, E),|V|=n$ is bi-directed.
- T is the set of maps from $[2, \ldots, n]$ to $[n]$ that gives spanning tree rooted at 1 .
- $\mathrm{ST}_{n}=\sum_{\theta \in \mathrm{T}} \prod_{i=2}^{n} x_{i, \theta(i)}$
- $\mathrm{ST}_{3}=$
$x_{2,1} \cdot x_{3,1}+x_{2,3} \cdot x_{3,1}+x_{3,2} \cdot x_{2,1}$.
- $x_{1,2} \cdot x_{3,2}$ is not a monomial in ST_{3}.

What is Spanning Tree Polynomial ?

- $\mathrm{ST}_{3}=$
$x_{2,1} \cdot x_{3,1}+x_{2,3} \cdot x_{3,1}+x_{3,2} \cdot x_{2,1}$.
- $x_{1,2} \cdot x_{3,2}$ is not a monomial in ST_{3}.
- $G=(V, E),|V|=n$ is bi-directed.
- T is the set of maps from $[2, \ldots, n]$ to $[n]$ that gives spanning tree rooted at 1 .
- $\mathrm{ST}_{n}=\sum_{\theta \in \mathrm{T}} \prod_{i=2}^{n} x_{i, \theta(i)}$
- U.b : Via determinantal computation using Matrix Tree Theorem

Set-multilinear Polynomial

Set-multilinear Polynomial

$$
\begin{array}{|llll|}
\begin{array}{llll}
x_{2,1} & x_{2,2} & \cdots & x_{2, n} \\
x_{3,1} & x_{3,2} & \cdots & x_{3, n} \\
x_{4,1} & x_{4,2} & \cdots & x_{4, n} \\
x_{n, 1} & x_{n, 2} & \cdots & x_{n, n}
\end{array} \\
& n-1 \times n
\end{array}
$$

Set-multilinear Polynomial

$\prod_{i=2}^{n} x_{i, \pi(i)}$

Set-multilinear Monotone Structure Theorem

For set-multilinear monotone polynomial f

$$
\begin{aligned}
& \text { if } C^{+}(f)=S \quad \text { then } \\
& f=\sum_{t=1}^{S+1} \alpha_{t} \cdot \beta_{t}
\end{aligned}
$$

with both α_{t} and β_{t} are monotone

$\forall t$ and
$\left|I\left(\alpha_{t}\right)\right|,\left|I\left(\beta_{t}\right)\right| \in\left[\frac{n}{3}, \frac{2 n}{3}\right] \longleftarrow$

Set-multilinear Monotone Structure Theorem

For set-multilinear monotone polynomial f

$$
\begin{aligned}
& \text { if } C^{+}(f)=S \text { then } \\
& f=\sum_{t=1}^{S+1} \alpha_{t} \cdot \beta_{t}
\end{aligned}
$$

with both α_{t} and β_{t} are monotone

$\forall t$ and
$\left|I\left(\alpha_{t}\right)\right|,\left|I\left(\beta_{t}\right)\right| \in\left[\frac{n}{3}, \frac{2 n}{3}\right] \longleftarrow$ Nearly Balanced Partition

Proof Idea of Result

$$
\mathrm{ST}_{n}=\sum_{t=1}^{S+1} a_{t} \cdot b_{t}
$$

- The measure is counting spanning tree monomials.
- The non spanning tree monomials are forbidden.

Proof Idea of Result

- $\mathrm{ST}_{n}=\sum_{t=1}^{S+1} a_{t} \cdot b_{t}$.
- The measure is counting spanning tree monomials.
- Using Expander Mixing lemma on a d regular expander graph, $\exists C_{1}$ s.t. $\left|\operatorname{mon}\left(a_{t} \cdot b_{t}\right)\right| \leq\left(C_{1} d\right)^{n-1}$ for any t.
- The non spanning tree monomials are forbidden.

Proof Idea of Result

- $\mathrm{ST}_{n}=\sum_{t=1}^{S+1} a_{t} \cdot b_{t}$.
- The measure is counting spanning tree monomials.
- The non spanning tree monomials are forbidden.
- Using Expander Mixing lemma on a d regular expander graph, $\exists C_{1}$ s.t. $\left|\operatorname{mon}\left(a_{t} \cdot b_{t}\right)\right| \leq\left(C_{1} d\right)^{n-1}$ for any t.
- Using Matrix Tree theorem $\exists C_{2}$ s.t. $\left|\operatorname{mon}\left(\mathrm{ST}_{n}\right)\right| \geq\left(C_{2} d\right)^{n-1}$.

Proof Idea of Result

■ $\mathrm{ST}_{n}=\sum_{t=1}^{S+1} a_{t} \cdot b_{t}$.

- The measure is counting spanning tree monomials.
- The non spanning tree monomials are forbidden.
- Using Expander Mixing lemma on a d regular expander graph, $\exists C_{1}$ s.t. $\left|\operatorname{mon}\left(a_{t} \cdot b_{t}\right)\right| \leq\left(C_{1} d\right)^{n-1}$ for any t.
- Using Matrix Tree theorem $\exists C_{2}$ s.t. $\left|\operatorname{mon}\left(\mathrm{ST}_{n}\right)\right| \geq\left(C_{2} d\right)^{n-1}$.
- $C_{2}>2 C_{1} \Longrightarrow S \geq 2^{\Omega(n)}$.

ϵ-Sensitive Monotone Lower Bound

Basic Question

Problem

Can monotone I.b yield general circuit lower bound ? Boolean world : Slice function (Valiant 1986)

Basic Question

Problem

Can monotone I.b yield general circuit lower bound ?

Remark

Boolean world : Slice function (Valiant 1986)

Arithmetic World: Approach of Hrubeš

Problem

Is there a hard polynomial f s.t. for every $\epsilon>0$, the polynomial $g_{\epsilon}=E+\epsilon \cdot f$ has large monotone complexity ?

Arithmetic World: Approach of Hrubeš

Problem

Is there a hard polynomial f s.t. for every $\epsilon>0$, the polynomial $g_{\epsilon}=E+\epsilon \cdot f$ has large monotone complexity ? $E \longrightarrow$ Easy for monotone.

Arithmetic World: Approach of Hrubeš

Problem

Is there a hard polynomial f s.t. for every $\epsilon>0$, the polynomial $g_{\epsilon}=E+\epsilon \cdot f$ has large monotone complexity ? $E \longrightarrow$ Easy for monotone.

- Hrubeš (2020): if $\mathrm{E}=\left(1+\sum_{i=1}^{n} x_{i}\right)^{n}$ then strong monotone I.b on g_{ϵ} for every sufficiently small $\epsilon>0 \Longrightarrow$ general circuit lower bound on f.

Arithmetic World: Approach of Hrubeš

Problem

Is there a hard polynomial f s.t. for every $\epsilon>0$, the polynomial $g_{\epsilon}=E+\epsilon \cdot f$ has large monotone complexity ? $E \longrightarrow$ Easy for monotone.

- Hrubeš (2020): if $\mathrm{E}=\left(1+\sum_{i=1}^{n} x_{i}\right)^{n}$ then strong monotone I.b on g_{ϵ} for every sufficiently small $\epsilon>0 \Longrightarrow$ general circuit lower bound on f.
- $\epsilon \approx 1 / 2^{2^{s}}$.

Arithmetic World: Approach of Hrubeš

Problem

Is there a hard polynomial f s.t. for every $\epsilon>0$, the polynomial $g_{\epsilon}=E+\epsilon \cdot f$ has large monotone complexity ? $E \longrightarrow$ Easy for monotone.

- Hrubeš (2020): if $\mathrm{E}=\left(1+\sum_{i=1}^{n} x_{i}\right)^{n}$ then strong monotone I.b on g_{ϵ} for every sufficiently small $\epsilon>0 \Longrightarrow$ general circuit lower bound on f.
- $\epsilon \approx 1 / 2^{2^{s}}$.
- $\mathrm{E}=\prod_{i=1}^{n} \sum_{j=1}^{m} x_{i, j} \longrightarrow$ general set-multilinear circuit I.b against f.

Some Remark About the Approach

■ If $\epsilon=0$ then g_{ϵ} has trivial monotone circuit.

Some Remark About the Approach

- If $\epsilon=0$ then g_{ϵ} has trivial monotone circuit.
- Monomial support of $\left(1+\sum_{i=1}^{n} x_{i}\right)^{n}+\epsilon \cdot f$ is full. So any support-based I.b technique fails.

Some Remark About the Approach

■ If $\epsilon=0$ then g_{ϵ} has trivial monotone circuit.

- Monomial support of $\left(1+\sum_{i=1}^{n} x_{i}\right)^{n}+\epsilon \cdot f$ is full. So any support-based I.b technique fails.
- E.g. Our previous technique fails.

Some Remark About the Approach

■ If $\epsilon=0$ then g_{ϵ} has trivial monotone circuit.

- Monomial support of $\left(1+\sum_{i=1}^{n} x_{i}\right)^{n}+\epsilon \cdot f$ is full. So any support-based I.b technique fails.
- E.g. Our previous technique fails.
- We Use techniques from Communication Complexity.

Results on ϵ-Sensitive Monotone Lower Bounds

■ C.D.M (2021): First ϵ-sensitive monotone I.b against a VNP polynomial family $\left\{f_{n}\right\}$ with $\epsilon \geq 2^{-\Omega(\sqrt{n})}$.

Results on ϵ-Sensitive Monotone Lower Bounds

- C.D.M (2021): First ϵ-sensitive monotone I.b against a VNP polynomial family $\left\{f_{n}\right\}$ with $\epsilon \geq 2^{-\Omega(\sqrt{n})}$.
- Can we show this for VP polynomial ?

Results on ϵ-Sensitive Monotone Lower Bounds

- C.D.M (2021): First ϵ-sensitive monotone I.b against a VNP polynomial family $\left\{f_{n}\right\}$ with $\epsilon \geq 2^{-\Omega(\sqrt{n})}$.
- Can we show this for VP polynomial ?

> Theorem:
> The Spanning Tree polynomials for complete graph on n vertices require exponential size ϵ-sensitive monotone lower bound in the set-multilinear setting for $\epsilon \geq 2^{-\Omega(\sqrt{n})}$.

Results on ϵ-Sensitive Monotone Lower Bounds

- C.D.M (2021): First ϵ-sensitive monotone I.b against a VNP polynomial family $\left\{f_{n}\right\}$ with $\epsilon \geq 2^{-\Omega(\sqrt{n})}$.
- Can we show this for VP polynomial ?

> Theorem:
> The Spanning Tree polynomials for complete graph on n vertices require exponential size ϵ-sensitive monotone lower bound in the set-multilinear setting for $\epsilon \geq 2^{-\Omega(\sqrt{n})}$.

Remark

Our lower bound technique crucially uses the discrepancy measure from Communication Complexity.

Spanning Tree Communication Problem

Spanning Tree Communication Problem

Spanning Tree Communication Problem

Goal : $E_{A} \bigcup E_{B}$ forms spanning tree rooted at

Spanning Tree Communication Problem

Goal : $E_{A} \bigcup E_{B}$ forms spanning tree rooted at 1 or not ?

Spanning Tree is Hard Under a Fixed Partition

- A gadget reduction from the Inner Product problem to the Spanning Tree problem.

Spanning Tree is Hard Under a Fixed Partition

- A gadget reduction from the Inner Product problem to the Spanning Tree problem.
- Inner Product: $\operatorname{IP}(x, y)=\sum_{i=1}^{n} x_{i} \cdot y_{i}(\bmod 2)$ is a well known hard problem.

Spanning Tree is Hard Under a Fixed Partition

- A gadget reduction from the Inner Product problem to the Spanning Tree problem.
- Inner Product: $\operatorname{IP}(x, y)=\sum_{i=1}^{n} x_{i} \cdot y_{i}(\bmod 2)$ is a well known hard problem.
- We show $\operatorname{IP}(x, y)=1$ iff the gadget graph $G_{x, y}$ has a spanning tree.

The Measure Discrepancy

The Measure Discrepancy

The Measure Discrepancy

- $\operatorname{Disc}(F, \delta)=\max _{R} \operatorname{Disc}(R, \delta)$.

The Measure Discrepancy

- $\operatorname{Disc}(F, \delta)=\max _{R} \operatorname{Disc}(R, \delta)$.
- Disc $(\mu, \operatorname{IP}(x, y)) \leq 2^{-\Omega\left(\frac{n}{2}\right)}[$ Chor, Goldreich (1988)] \Longrightarrow Spanning Tree problem has low discrepancy.

A Subtle Issue

$\square \mathrm{ST}_{n}=\sum_{t} \alpha_{t} \cdot \beta_{t}$.

Every $\alpha_{t} \cdot \beta_{t}$ gives a different
rectangle with Alice has α_{t} and

Bob has β_{4}

A Subtle Issue

■ $\mathrm{ST}_{n}=\sum_{t} \alpha_{t} \cdot \beta_{t}$.

- Every $\alpha_{t} \cdot \beta_{t}$ gives a different rectangle with Alice has α_{t} and Bob has β_{t}.

A Subtle Issue

$\mathrm{ST}_{n}=\sum_{t} \alpha_{t} \cdot \beta_{t}$.

- Every $\alpha_{t} \cdot \beta_{t}$ gives a different rectangle with Alice has α_{t} and Bob has β_{t}.

Every Product polynomial may give different partition.

A Subtle Issue

$\mathrm{ST}_{n}=\sum_{t} \alpha_{t} \cdot \beta_{t}$.

- Every $\alpha_{t} \cdot \beta_{t}$ gives a different rectangle with Alice has α_{t} and Bob has β_{t}.

Every Product polynomial may give different partition.
$\operatorname{IP}(X, Y)=\sum_{i=1}^{n} x_{i} y_{i}$ is not hard under partition $\left\{\left(x_{1}, \ldots x_{n / 2}, y_{1}, \ldots, y_{n / 2}\right) \bigsqcup\left(x_{n / 2+1}, \ldots, x_{n}, y_{n / 2+1}, \ldots, y_{n}\right)\right\}$.

Global Measure Via Universal Distribution

- We need a Universal distribution, under which for every nearly balanced partition, the discrepancy of Spanning Tree problem remains low.

Global Measure Via Universal Distribution

- We need a Universal distribution, under which for every nearly balanced partition, the discrepancy of Spanning Tree problem remains low.
- We transfer this discrepancy bound to a lower bound using the following novel correspondence theorem.

Discrepancy-Sensitivity Correspondence

Theorem

Let Δ be a Universal distribution and f be a $0-1$ set-multilinear polynomial. If the communication problem C_{P}^{f} has discrepancy at most γ w.r.t Δ for every nearly balance partition P, then the monotone complexity of $F_{n, m}-\epsilon \cdot f$ is atleast $\frac{\epsilon}{3 \gamma}$ as long as $\epsilon \geq \frac{6 \gamma}{1-3 \gamma}$.

Discrepancy-Sensitivity Correspondence

Theorem

Let Δ be a Universal distribution and f be a $0-1$ set-multilinear polynomial. If the communication problem C_{P}^{f} has discrepancy at most γ w.r.t Δ for every nearly balance partition P, then the monotone complexity of $F_{n, m}-\epsilon \cdot f$ is atleast $\frac{\epsilon}{3 \gamma}$ as long as $\epsilon \geq \frac{6 \gamma}{1-3 \gamma}$.

We construct an Universal distribution Δ s.t the discrepancy of Spanning Tree problem w.r.t Δ for every nearly balance partition is at most $2^{-\Omega(n)}$

Conclusion and Open Problems

- First strongly exponential separation between Monotone-VP and VP.
- First exponential size ϵ-sensitive lower bound against a VP polynomial.

Conclusion and Open Problems

■ First strongly exponential separation between Monotone-VP and VP.

- First exponential size ϵ-sensitive lower bound against a VP polynomial.
- Give a strongly exponential size e-sensitive lower bound for a polynomial in

Conclusion and Open Problems

■ First strongly exponential separation between Monotone-VP and VP.

- First exponential size ϵ-sensitive lower bound against a VP polynomial.

Open Problems

- Find Polynomial with polynomial size non monotone formulas and strongly exponential monotone circuit complexity.

Conclusion and Open Problems

- First strongly exponential separation between Monotone-VP and VP.
- First exponential size ϵ-sensitive lower bound against a VP polynomial.

Open Problems

- Find Polynomial with polynomial size non monotone formulas and strongly exponential monotone circuit complexity.
- Give a strongly exponential size ϵ-sensitive lower bound for a polynomial in VP.
- Give sensitive lower bounds against the following polynomials,

Conclusion and Open Problems

- First strongly exponential separation between Monotone-VP and VP.
- First exponential size ϵ-sensitive lower bound against a VP polynomial.

Open Problems

- Find Polynomial with polynomial size non monotone formulas and strongly exponential monotone circuit complexity.
- Give a strongly exponential size ϵ-sensitive lower bound for a polynomial in VP.
- Give sensitive lower bounds against the following polynomials, $F_{n, n} \pm \epsilon \cdot \operatorname{det}_{n, n}$ and $F_{n, n} \pm \epsilon \cdot$ Perm $_{n, n}$.

There are more exciting open problems in our paper. We invite you to check the following link https://arxiv.org/abs/2109.06941

Thank You

