Monotone Complexity of Spanning Tree Polynomial Re-visited

Arkadev Chattopadhyay (TIFR, Mumbai), Rajit Datta (Goldman-Sachs), Utsab Ghosal (CMI), Partha Mukhopadhyay (CMI)

March 31, 2023

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

March 31, 2023

- **1** Basic Model of Computation
- 2 Strongly Exponential Lower Bound Against Monotone Circuits
- **3** ϵ -Sensitive Monotone Lower Bound
- 4 Summary and Open Problems

Basic Model of Computation

Basic Model of Computation

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

March 31, 2023

Arithmetic Circuits

- Arithmetic circuits are model for computing polynomials.
- Size of the circuit is the number of nodes.
- Monotone Circuits : Only non-negative scalars are allowed on edges. They naturally compute monotone polynomials.

 $f(x_1, x_2, x_3, x_4) = (2x_1 + 3x_2 + 5x_3 + 5x_4)(x_2 + x_3)$

Arithmetic Circuits

 Arithmetic circuits are model for computing polynomials.

• Size of the circuit is the number of nodes.

 Monotone Circuits : Only non-negative scalars are allowed on edges. They naturally compute monotone polynomials.

 $f(x_1, x_2, x_3, x_4) = (2x_1 + 3x_2 + 5x_3 + 5x_4)(x_2 + x_3)$

Arithmetic Circuits

- Arithmetic circuits are model for computing polynomials.
- Size of the circuit is the number of nodes.
- Monotone Circuits : Only non-negative scalars are allowed on edges. They naturally compute monotone polynomials.

 $f(x_1, x_2, x_3, x_4) = (2x_1 + 3x_2 + 5x_3 + 5x_4)(x_2 + x_3)$

Important monotone polynomials: $S_{n,k} = \sum \prod x_i$ $S \in [n] \ i \in S$ |S| = k $\mathsf{Perm}_{n \times n} = \sum \prod_{i=1}^{n} x_{i,\sigma(i)}$ $\sigma \in S_m$ i=1

monotone polynomials. Important monotone polynomials: $f = \sum \alpha_m m$, $\alpha_m \ge 0$ $S_{n,k} = \sum \prod x_i$ $\substack{S \in [n] \ i \in S \\ |S| = k}$ $\mathsf{Perm}_{n \times n} = \sum \prod x_{i,\sigma(i)}$ $\sigma \in S_n i=1$

Monotone circuits are universal for

Important monotone polynomials:

 $S_{n,k}$ has an efficient monotone circuit.

Important monotone polynomials:

 $S_{n,k}$ has an efficient monotone circuit.

Important monotone polynomials:

 $S_{n,k}$ has an efficient monotone circuit.

Important monotone polynomials:

$$S_{n,k} = \sum_{\substack{S \in [n] \\ |S|=k}} \prod_{i \in S} x_i$$

$$\mathsf{Perm}_{n \times n} = \sum_{\sigma \in S_n} \prod_{i=1}^n x_{i,\sigma(i)}$$

■ Number of variables in Perm_{n×n} is n².

•
$$\operatorname{Ckt}^+ - \operatorname{size}(\operatorname{Perm}_{n \times n}) \ge 2^{\Omega(n)}$$
.

The known u.b. for $\operatorname{Perm}_{n \times n}$ is $2^{O(n \log n)}$.

Important monotone polynomials:

$$S_{n,k} = \sum_{\substack{S \in [n] \\ |S| = k}} \prod_{i \in S} x_i$$

•
$$\operatorname{Ckt}^+ - \operatorname{size}(\operatorname{Perm}_{n \times n}) \ge 2^{\Omega(n)}$$
.

$$\mathsf{Perm}_{n imes n} = \sum_{\sigma \in S_n} \prod_{i=1}^n x_{i,\sigma(i)}$$

The known u.b. for $\operatorname{Perm}_{n \times n}$ is $2^{O(n \log n)}$.

Important monotone polynomials:

$$S_{n,k} = \sum_{\substack{S \in [n] \\ |S| = k}} \prod_{i \in S} x_i$$

$$\mathsf{Perm}_{n \times n} = \sum_{\sigma \in S_n} \prod_{i=1}^n x_{i,\sigma(i)}$$

■ Number of variables in Perm_{n×n} is n².

•
$$\mathsf{Ckt}^+ - \mathsf{size}(\mathsf{Perm}_{n \times n}) \ge 2^{\Omega(n)}$$
.

The known u.b. for $\operatorname{Perm}_{n \times n}$ is $2^{O(n \log n)}$.

Important monotone polynomials:

$$S_{n,k} = \sum_{\substack{S \in [n] \\ |S|=k}} \prod_{i \in S} x_i$$

$$\mathsf{Perm}_{n \times n} = \sum_{\sigma \in S_n} \prod_{i=1}^n x_{i,\sigma(i)}$$

■ Number of variables in Perm_{n×n} is n².

•
$$\mathsf{Ckt}^+ - \mathsf{size}(\mathsf{Perm}_{n \times n}) \ge 2^{\Omega(n)}$$
.

• The known u.b. for $\operatorname{Perm}_{n \times n}$ is $2^{O(n \log n)}$.

Basic Model of Computation

Monotone Computations

Is there a monotone polynomial on n variables that has monotone circuit lower bounds of $2^{\Omega(n)}$, i.e. strongly exponential ?

Remark

Perm is not a candidate.

Basic Model of Computation

Monotone Computations

Is there a monotone polynomial on n variables that has monotone circuit lower bounds of $2^{\Omega(n)}$, i.e. strongly exponential ?

Remark

Perm is not a candidate.

Strongly Exponential Lower Bound Against Monotone Circuits

Strongly exp. lower bound

- Gashkov-Sergeev (80's).
- Raz-Yehudayoff (2009).
- Srinivasan (2019)
- Cavalar-Kumar-Rossman (2020).
- Hrubeš-Yehudayoff (2021)

All polynomials are in VNP.

- Strongly exp. lower bound
 - Gashkov-Sergeev (80's).
 - Raz-Yehudayoff (2009).
 - Srinivasan (2019)
 - Cavalar-Kumar-Rossman (2020).
 - Hrubeš-Yehudayoff (2021)

All polynomials are in VNP.

- Strongly exp. lower bound
 - Gashkov-Sergeev (80's).
 - Raz-Yehudayoff (2009).
 - Srinivasan (2019)
 - Cavalar-Kumar-Rossman (2020).
 - Hrubeš-Yehudayoff (2021)

All polynomials are in VNP.

- Strongly exp. lower bound
 - Gashkov-Sergeev (80's).
 - Raz-Yehudayoff (2009).
 - Srinivasan (2019)
 - Cavalar-Kumar-Rossman (2020).
 - Hrubeš-Yehudayoff (2021)

All polynomials are in VNP.

Known Results

Valiant (1979). Jerrum-Snir (1982). Snir

Known Results

Valiant
(1979).
Jerrum-
Snir
(1982)
Ckt-⁺size
$$(f_n) \ge 2^{\Omega(\sqrt{n})}$$
.
 $f_n \in \mathbb{VP}$

Known Results

Valiant (1979).
Ckt-+size(
$$f_n$$
) $\geq 2^{\Omega(\sqrt{n})}$. $f_n \in VP$
Jerrum-Snir (1982).

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

- Valiant (1979). - Ckt-⁺size $(f_n) \ge 2^{\Omega(\sqrt{n})}$. - Jerrum-Snir (1982). $f_n \in \mathsf{VP}.$

Any strongly exp. monotone lower bound for VP polynomial ?

Valiant (1979).
Jerrum-Snir (1982).
Ckt-⁺size $(f_n) \ge 2^{\Omega(\sqrt{n})}$. $f_n \in \mathsf{VP}.$

Any strongly exp. monotone lower bound for VP polynomial ?

Yes!(Our result)

Our Result

Theorem:

The Spanning tree polynomial defined for a family of constant degree expander graphs on n vertices requires monotone circuits of size $2^{\Omega(n)}$.

Remark

Number of variables in our polynomial is $\Theta(n)$.

First strongly exp. monotone l.b for VP.

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

March 31, 2023

Our Result

Theorem:

The Spanning tree polynomial defined for a family of constant degree expander graphs on n vertices requires monotone circuits of size $2^{\Omega(n)}$.

Remark

• Number of variables in our polynomial is $\Theta(n)$.

First strongly exp. monotone l.b for VP.

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

March 31, 2023

Our Result

Theorem:

The Spanning tree polynomial defined for a family of constant degree expander graphs on n vertices requires monotone circuits of size $2^{\Omega(n)}$.

Remark

• Number of variables in our polynomial is $\Theta(n)$.

First strongly exp. monotone l.b for VP.

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

What is Spanning Tree Polynomial ?

 \blacksquare ST₃ =

 $\begin{array}{l} x_{2,1} \cdot x_{3,1} + x_{2,3} \cdot x_{3,1} + x_{3,2} \cdot x_{2,1}. \\ \bullet x_{1,2} \cdot x_{3,2} \text{ is not a monomial in} \\ \mathrm{ST}_3. \end{array}$

• G = (V, E), |V| = n is bi-directed.

 T is the set of maps from [2,...,n] to [n] that gives spanning tree roote<u>d at 1</u>

• ST_n =
$$\sum_{\theta \in T} \prod_{i=2}^{n} x_{i,\theta(i)}$$

 U.b : Via determinantal computation using Matrix Tree Theorem

What is Spanning Tree Polynomial ?

 \blacksquare ST₃ =

 $\begin{array}{l} x_{2,1} \cdot x_{3,1} + x_{2,3} \cdot x_{3,1} + x_{3,2} \cdot x_{2,1}. \\ \bullet x_{1,2} \cdot x_{3,2} \text{ is not a monomial in} \\ \mathrm{ST}_3. \end{array}$

• G = (V, E), |V| = n is bi-directed.

 T is the set of maps from [2,...,n] to [n] that gives spanning tree rooted at 1.

• ST_n =
$$\sum_{\theta \in \mathbf{T}} \prod_{i=2}^{n} x_{i,\theta(i)}$$

 U.b : Via determinantal computation using Matrix Tree Theorem

 \blacksquare ST₃ =

 $\begin{array}{c} x_{2,1} \cdot x_{3,1} + x_{2,3} \cdot x_{3,1} + x_{3,2} \cdot x_{2,1}. \\ \bullet & x_{1,2} \cdot x_{3,2} \text{ is not a monomial in} \\ \mathrm{ST}_3. \end{array}$

• G = (V, E), |V| = n is bi-directed.

■ T is the set of maps from [2,...,n] to [n] that gives spanning tree rooted at 1.

• ST_n =
$$\sum_{\theta \in \mathbf{T}} \prod_{i=2}^{n} x_{i,\theta(i)}$$

 \blacksquare ST₃ =

 $\begin{array}{l} x_{2,1} \cdot x_{3,1} + x_{2,3} \cdot x_{3,1} + x_{3,2} \cdot x_{2,1}. \\ \bullet \ x_{1,2} \cdot x_{3,2} \text{ is not a monomial in} \\ \mathrm{ST}_3. \end{array}$

• G = (V, E), |V| = n is bi-directed.

■ T is the set of maps from [2,...,n] to [n] that gives spanning tree rooted at 1.

• ST_n =
$$\sum_{\theta \in \mathbf{T}} \prod_{i=2}^{n} x_{i,\theta(i)}$$

 $\overline{}$ ST₃ =

 $\begin{array}{c} x_{2,1} \cdot x_{3,1} + x_{2,3} \cdot x_{3,1} + x_{3,2} \cdot x_{2,1}. \\ \bullet & x_{1,2} \cdot x_{3,2} \text{ is not a monomial in} \\ & \mathrm{ST}_3. \end{array}$

- G = (V, E), |V| = n is bi-directed.
- T is the set of maps from [2,...,n] to [n] that gives spanning tree rooted at 1.

• ST_n = $\sum_{\theta \in T} \prod_{i=2}^{n} x_{i,\theta(i)}$

 \blacksquare ST₃ =

 $\begin{array}{l} x_{2,1} \cdot x_{3,1} + x_{2,3} \cdot x_{3,1} + x_{3,2} \cdot x_{2,1}. \\ \bullet \ x_{1,2} \cdot x_{3,2} \text{ is not a monomial in} \\ \mathrm{ST}_3. \end{array}$

- G = (V, E), |V| = n is bi-directed.
- T is the set of maps from [2,...,n] to [n] that gives spanning tree rooted at 1.

$$\operatorname{ST}_n = \sum_{\theta \in \operatorname{T}} \prod_{i=2}^n x_{i,\theta(i)}$$

 $\overline{}$ ST₃ =

 $\begin{array}{c} x_{2,1} \cdot x_{3,1} + x_{2,3} \cdot x_{3,1} + x_{3,2} \cdot x_{2,1}. \\ \bullet & x_{1,2} \cdot x_{3,2} \text{ is not a monomial in} \\ & \text{ST}_3. \end{array}$

- G = (V, E), |V| = n is bi-directed.
- T is the set of maps from [2,...,n] to [n] that gives spanning tree rooted at 1.

$$\operatorname{ST}_n = \sum_{\theta \in \operatorname{T}} \prod_{i=2}^n x_{i,\theta(i)}$$

Strongly Exponential Lower Bound Against Monotone Circuits

Set-multilinear Polynomial

 $\pi:[2,n] \longrightarrow [n]$

$x_{2,1}$	$x_{2,2}$	$\cdots x_{2,n}$
$x_{3,1}$	$x_{3,2}$	$\cdots x_{3,n}$
$x_{4,1}$	$x_{4,2}$	$\cdots x_{4,n}$
$x_{n,1}$	$x_{n,2}$	$\cdots x_{n,n}$

 $n-1 \times n$

Strongly Exponential Lower Bound Against Monotone Circuits

Set-multilinear Polynomial

 $\pi:[2,n] \longrightarrow [n]$

$x_{2,1}$	$x_{2,2}$		$x_{2,n}$
$x_{3,1}$	$x_{3,2}$		$x_{3,n}$
$x_{4,1}$	$x_{4,2}$		$x_{4,n}$
<i>~</i> .	<i>~</i> -		~
$x_{n,1}$	$x_{n,2}$	•••	$x_{n,n}$

 $n-1 \times n$

 $\prod_{i=2}^n x_{i,\pi(i)}$

Strongly Exponential Lower Bound Against Monotone Circuits

Set-multilinear Polynomial

 $\pi:[2,n] \longrightarrow [n]$

$x_{2,1}$	$x_{2,2}$	$x_{2,n}$
$x_{3,1}$	$x_{3,2}$	$x_{3,n}$
$x_{4,1}$	$x_{4,2}$	$x_{4,n}$
$x_{n,1}$	$x_{n,2}$	$x_{n,n}$

 $n-1 \times n$

 $\prod_{i=2}^n x_{i,\pi(i)}$

Set-multilinear Monotone Structure Theorem

For set-multilinear monotone polynomial f

if
$$C^+(f) = S$$
 then
 $f = \sum_{t=1}^{S+1} \alpha_t \cdot \beta_t$

with both α_t and β_t are monotone $\forall t$ and $|I(\alpha_t)|, |I(\beta_t)| \in \left[\frac{n}{3}, \frac{2n}{3}\right] \longleftarrow$ Nearly Balanced Partition

m

Set-multilinear Monotone Structure Theorem

For set-multilinear monotone polynomial f

if
$$C^+(f) = S$$
 then
 $f = \sum_{t=1}^{S+1} \alpha_t \cdot \beta_t$

with both α_t and β_t are monotone $\forall t$ and $|I(\alpha_t)|, |I(\beta_t)| \in \left[\frac{n}{3}, \frac{2n}{3}\right] \longleftarrow$ Nearly Balanced Partition

• ST_n =
$$\sum_{t=1}^{S+1} a_t \cdot b_t$$
.

- The measure is counting spanning tree monomials.
- Using Expander Mixing lemma on a d regular expander graph, ∃ C₁ s.t. |mon(a_t ⋅ b_t)| ≤ (C₁d)ⁿ⁻¹ for any t.

- The non spanning tree monomials are forbidden.
- Using Matrix Tree theorem $\exists C_2 \text{ s.t.}$ $|\text{mon}(\text{ST}_n)| \ge (C_2 d)^{n-1}.$

$\bullet C_2 > 2C_1 \implies S \ge 2^{\Omega(n)}.$

• ST_n =
$$\sum_{t=1}^{S+1} a_t \cdot b_t$$
.

- The measure is counting spanning tree monomials.
- Using Expander Mixing lemma on a dregular expander graph, $\exists C_1$ s.t. $|\text{mon}(a_t \cdot b_t)| \le (C_1 d)^{n-1}$ for any t.

- The non spanning tree monomials are forbidden.
- Using Matrix Tree theorem $\exists C_2 \text{ s.t.}$ $|\text{mon}(\text{ST}_n)| \ge (C_2 d)^{n-1}.$

$$\bullet C_2 > 2C_1 \implies S \ge 2^{\Omega(n)}.$$

• ST_n =
$$\sum_{t=1}^{S+1} a_t \cdot b_t$$
.

- The measure is counting spanning tree monomials.
- Using Expander Mixing lemma on a dregular expander graph, $\exists C_1$ s.t. $|\text{mon}(a_t \cdot b_t)| \le (C_1 d)^{n-1}$ for any t.

- The non spanning tree monomials are forbidden.
- Using Matrix Tree theorem $\exists C_2 \text{ s.t.}$ $|\text{mon}(\text{ST}_n)| \ge (C_2 d)^{n-1}.$

 $\bullet C_2 > 2C_1 \implies S \ge 2^{\Omega(n)}.$

$$\blacksquare \operatorname{ST}_n = \sum_{t=1}^{S+1} a_t \cdot b_t.$$

- The measure is counting spanning tree monomials.
- Using Expander Mixing lemma on a dregular expander graph, $\exists C_1$ s.t. $|\text{mon}(a_t \cdot b_t)| \le (C_1 d)^{n-1}$ for any t.

- The non spanning tree monomials are forbidden.
- Using Matrix Tree theorem $\exists C_2 \text{ s.t.}$ $|\text{mon}(\text{ST}_n)| \ge (C_2 d)^{n-1}.$

$$\bullet C_2 > 2C_1 \implies S \ge 2^{\Omega(n)}.$$

ϵ -Sensitive Monotone Lower Bound

Basic Question

Problem

Can monotone I.b yield general circuit lower bound ?

Remark

Boolean world : Slice function (Valiant 1986)

Basic Question

Problem

Can monotone I.b yield general circuit lower bound ?

Remark

Boolean world : Slice function (Valiant 1986)

Arithmetic World: Approach of Hrubeš

Problem

Is there a hard polynomial f s.t. for every $\epsilon > 0$, the polynomial $g_{\epsilon} = \mathbf{E} + \epsilon \cdot f$ has large monotone complexity ? $E \longrightarrow E$ asy for monotone.

Hrubeš (2020): if $E = (1 + \sum_{i=1}^{n} x_i)^n$ then strong monotone l.b on g_{ϵ} for every sufficiently small $\epsilon > 0 \implies$ general circuit lower bound on f.

 $\bullet \epsilon \approx 1/2^{2^s}.$

• $E = \prod_{i=1}^{n} \sum_{j=1}^{m} x_{i,j} \longrightarrow$ general set-multilinear circuit l.b against f.

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

Arithmetic World: Approach of Hrubeš

Problem

Is there a hard polynomial f s.t. for every $\epsilon > 0$, the polynomial $g_{\epsilon} = \mathbf{E} + \epsilon \cdot f$ has large monotone complexity ? $E \longrightarrow$ Easy for monotone.

Hrubeš (2020): if $E = (1 + \sum_{i=1}^{n} x_i)^n$ then strong monotone l.b on g_{ϵ} for every sufficiently small $\epsilon > 0 \implies$ general circuit lower bound on f.

• $\epsilon \approx 1/2^{2^s}$.

• $E = \prod_{i=1}^{n} \sum_{j=1}^{m} x_{i,j} \longrightarrow$ general set-multilinear circuit l.b against f.

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

Arithmetic World: Approach of Hrubeš

Problem

Is there a hard polynomial f s.t. for every $\epsilon > 0$, the polynomial $g_{\epsilon} = \mathbf{E} + \epsilon \cdot f$ has large monotone complexity ? $E \longrightarrow$ Easy for monotone.

Hrubeš (2020): if $E = (1 + \sum_{i=1}^{n} x_i)^n$ then strong monotone l.b on g_{ϵ} for every sufficiently small $\epsilon > 0 \implies$ general circuit lower bound on f.

• $\epsilon \approx 1/2^{2^s}$.

• $\mathbb{E} = \prod_{i=1}^{n} \sum_{j=1}^{m} x_{i,j} \longrightarrow$ general set-multilinear circuit l.b against f.

Arithmetic World: Approach of Hrubeš

Problem

Is there a hard polynomial f s.t. for every $\epsilon > 0$, the polynomial $g_{\epsilon} = \mathbf{E} + \epsilon \cdot f$ has large monotone complexity ? $E \longrightarrow$ Easy for monotone.

■ Hrubeš (2020): if $\mathsf{E} = (1 + \sum_{i=1}^{n} x_i)^n$ then strong monotone l.b on g_{ϵ} for every sufficiently small $\epsilon > 0 \implies$ general circuit lower bound on f.

• $\epsilon \approx 1/2^{2^s}$.

• $E = \prod_{i=1}^{n} \sum_{j=1}^{m} x_{i,j} \longrightarrow$ general set-multilinear circuit l.b against f.

Arithmetic World: Approach of Hrubeš

Problem

Is there a hard polynomial f s.t. for every $\epsilon > 0$, the polynomial $g_{\epsilon} = \mathbf{E} + \epsilon \cdot f$ has large monotone complexity ? $E \longrightarrow$ Easy for monotone.

■ Hrubeš (2020): if $\mathsf{E} = (1 + \sum_{i=1}^{n} x_i)^n$ then strong monotone l.b on g_{ϵ} for every sufficiently small $\epsilon > 0 \implies$ general circuit lower bound on f.

•
$$\epsilon \approx 1/2^{2^s}$$
.

• $\mathsf{E} = \prod_{i=1}^{n} \sum_{j=1}^{m} x_{i,j} \longrightarrow$ general set-multilinear circuit l.b against f.

If $\epsilon = 0$ then g_{ϵ} has trivial monotone circuit.

- Monomial support of $(1 + \sum_{i=1}^{n} x_i)^n + \epsilon \cdot f$ is full. So any support-based l.b. technique fails.
- E.g. Our previous technique fails.
- We Use techniques from Communication Complexity.

- If $\epsilon = 0$ then g_{ϵ} has trivial monotone circuit.
- Monomial support of $(1 + \sum_{i=1}^{n} x_i)^n + \epsilon \cdot f$ is full. So any support-based l.b technique fails.
- E.g. Our previous technique fails.
- We Use techniques from Communication Complexity.

- If $\epsilon = 0$ then g_{ϵ} has trivial monotone circuit.
- Monomial support of $(1 + \sum_{i=1}^{n} x_i)^n + \epsilon \cdot f$ is full. So any support-based l.b technique fails.
- E.g. Our previous technique fails.
- We Use techniques from Communication Complexity.

- If $\epsilon = 0$ then g_{ϵ} has trivial monotone circuit.
- Monomial support of $(1 + \sum_{i=1}^{n} x_i)^n + \epsilon \cdot f$ is full. So any support-based l.b technique fails.
- E.g. Our previous technique fails.
- We Use techniques from Communication Complexity.

Results on ϵ -Sensitive Monotone Lower Bounds

C.D.M (2021): First ϵ -sensitive monotone l.b against a VNP polynomial family $\{f_n\}$ with $\epsilon \geq 2^{-\Omega(\sqrt{n})}$.

Can we show this for VP polynomial ?

Theorem

The Spanning Tree polynomials for complete graph on n vertices require exponential size ϵ -sensitive monotone lower bound in the set-multilinear setting for $\epsilon \geq 2^{-\Omega(\sqrt{n})}$.

Remark

Our lower bound technique crucially uses the discrepancy measure from Communication Complexity.

Results on ϵ -Sensitive Monotone Lower Bounds

C.D.M (2021): First ϵ -sensitive monotone l.b against a VNP polynomial family $\{f_n\}$ with $\epsilon \geq 2^{-\Omega(\sqrt{n})}$.

Can we show this for VP polynomial ?

Theorem: The Spanning Tree polynomials for complete graph on n vertices require exponential size ϵ -sensitive monotone lower bound in the set-multilinear setting for $\epsilon \geq 2^{-\Omega(\sqrt{n})}$.

Remark

Our lower bound technique crucially uses the discrepancy measure from Communication Complexity.

 ϵ -Sensitive Monotone Lower Bound

Results on ϵ -Sensitive Monotone Lower Bounds

C.D.M (2021): First ϵ -sensitive monotone l.b against a VNP polynomial family $\{f_n\}$ with $\epsilon \geq 2^{-\Omega(\sqrt{n})}$.

Can we show this for VP polynomial ?

Theorem:

The Spanning Tree polynomials for complete graph on n vertices require exponential size ϵ -sensitive monotone lower bound in the set-multilinear setting for $\epsilon \geq 2^{-\Omega(\sqrt{n})}$.

Remark

Our lower bound technique crucially uses the discrepancy measure from Communication Complexity.

Results on ϵ -Sensitive Monotone Lower Bounds

C.D.M (2021): First ϵ -sensitive monotone l.b against a VNP polynomial family $\{f_n\}$ with $\epsilon \geq 2^{-\Omega(\sqrt{n})}$.

Can we show this for VP polynomial ?

Theorem:

The Spanning Tree polynomials for complete graph on n vertices require exponential size ϵ -sensitive monotone lower bound in the set-multilinear setting for $\epsilon \geq 2^{-\Omega(\sqrt{n})}$.

Remark

Our lower bound technique crucially uses the discrepancy measure from Communication Complexity.

Spanning Tree Communication Problem

$V_A \qquad V = V_A \biguplus V_B \qquad V_B$ $E_A = \{(u \to v) \mid u \in V_A \} \qquad \qquad \{(w \to v) \mid w \in V_B\} = E_B$

Goal : $E_A igcup E_B$ forms spanning tree rooted at 1 or not ?

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

Spanning Tree Communication Problem

 $V_A \quad V = V_A \biguplus V_B \quad V_B$

 $E_A = \{ (u \to v) \mid u \in V_A \} \qquad \{ (w \to v) \mid w \in V_B \} = E_B$

Goal : $E_A igcup E_B$ forms spanning tree rooted at 1 or not ?

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

Spanning Tree Communication Problem

Goal : $E_A \bigcup E_B$ forms spanning tree rooted at 1 or not ?

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

Spanning Tree Communication Problem

 $E_A = \{ (u \to v) \mid u \in V_A \} \qquad \{ (w \to v) \mid w \in V_B \} = E_B$

Goal : $E_A \bigcup E_B$ forms spanning tree rooted at 1 or not ?

Spanning Tree is Hard Under a Fixed Partition

A gadget reduction from the Inner Product problem to the Spanning Tree problem.

Inner Product: $IP(x,y) = \sum_{i=1}^{n} x_i \cdot y_i \pmod{2}$ is a well known hard problem.

• We show IP(x, y) = 1 iff the gadget graph $G_{x,y}$ has a spanning tree.

Spanning Tree is Hard Under a Fixed Partition

- A gadget reduction from the Inner Product problem to the Spanning Tree problem.
- Inner Product: IP $(x, y) = \sum_{i=1}^{n} x_i \cdot y_i \pmod{2}$ is a well known hard problem.

• We show IP(x, y) = 1 iff the gadget graph $G_{x,y}$ has a spanning tree.
Spanning Tree is Hard Under a Fixed Partition

- A gadget reduction from the Inner Product problem to the Spanning Tree problem.
- Inner Product: IP $(x, y) = \sum_{i=1}^{n} x_i \cdot y_i \pmod{2}$ is a well known hard problem.
- We show IP(x, y) = 1 iff the gadget graph $G_{x,y}$ has a spanning tree.

$$R = A \times B$$
 where $A, B \subseteq \{0, 1\}^m$

 $\square \operatorname{Disc}(F, \delta) = \max_{R} \operatorname{Disc}(R, \delta).$

■ $\operatorname{Disc}(\mu, \operatorname{IP}(x, y)) \leq 2^{-\Omega(\frac{n}{2})}$ [Chor, Goldreich (1988)] \implies Spanning. Tree problem has low discrepancy.

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

$$R = A \times B$$
 where $A, B \subseteq \{0, 1\}^m$

Disc $(F, \delta) = \max_{R} \operatorname{Disc}(R, \delta).$

■ $\operatorname{Disc}(\mu, \operatorname{IP}(x, y)) \leq 2^{-\Omega(\frac{n}{2})}$ [Chor, Goldreich (1988)] \implies Spanning Tree problem has low discrepancy.

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

$$R = A \times B$$
 where $A, B \subseteq \{0, 1\}^m$

 $\label{eq:disc} \square \operatorname{Disc}(F,\delta) = \max_R \operatorname{Disc}(R,\delta).$

■ $\operatorname{Disc}(\mu, \operatorname{IP}(x, y)) \leq 2^{-\Omega(\frac{n}{2})}$ [Chor, Goldreich (1988)] \implies Spanning Tree problem has low discrepancy.

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

$$R = A \times B$$
 where $A, B \subseteq \{0, 1\}^m$

 $\square \operatorname{Disc}(F, \delta) = \max_{R} \operatorname{Disc}(R, \delta).$

■ $Disc(\mu, IP(x, y)) \le 2^{-\Omega(\frac{n}{2})}$ [Chor, Goldreich (1988)] \implies Spanning Tree problem has low discrepancy.

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

S
$$\mathbf{T}_n = \sum_t \alpha_t \cdot \beta_t.$$

 Every α_t · β_t gives a different rectangle with Alice has α_t and Bob has β_t.

 $(I(\alpha_t), I(\beta_t)) = [n]$

Every Product polynomial may give different partition.

$\mathsf{IP}(X,Y) = \sum_{i=1}^{n} x_i y_i \text{ is not hard under partition}$ $\{ (x_1, \dots, x_{n/2}, y_1, \dots, y_{n/2}) \bigsqcup (x_{n/2+1}, \dots, x_n, y_{n/2+1}, \dots, y_n) \}$

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

ST_n =
$$\sum_t \alpha_t \cdot \beta_t$$
.

 Every α_t · β_t gives a different rectangle with Alice has α_t and Bob has β_t.

Every Product polynomial may give different partition.

$\mathsf{IP}(X,Y) = \sum_{i=1}^{n} x_i y_i \text{ is not hard under partition} \\ \{(x_1, \dots, x_{n/2}, y_1, \dots, y_{n/2}) \bigsqcup (x_{n/2+1}, \dots, x_n, y_{n/2+1}, \dots, y_n) \}.$

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

S
$$\mathbf{T}_n = \sum_t \alpha_t \cdot \beta_t.$$

 Every α_t · β_t gives a different rectangle with Alice has α_t and Bob has β_t.

 $(I(\alpha_t), I(\beta_t)) = [n]$

Every Product polynomial may give different partition.

$\mathsf{IP}(X,Y) = \sum_{i=1}^{n} x_i y_i \text{ is not hard under partition} \\ \{(x_1, \dots, x_{n/2}, y_1, \dots, y_{n/2}) \bigsqcup (x_{n/2+1}, \dots, x_n, y_{n/2+1}, \dots, y_n) \}.$

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

S
$$\mathbf{T}_n = \sum_t \alpha_t \cdot \beta_t.$$

 Every α_t · β_t gives a different rectangle with Alice has α_t and Bob has β_t.

$$\operatorname{Alice}_{I(\alpha_t)} \left\{ \begin{array}{c} \overbrace{(x_i \ , \ y_j)}^{\operatorname{Bob} \ I(\beta_t)} \\ \overbrace{(x_i \ , \ y_j)}^{\operatorname{Form}} F(x_i \ , \ y_j) \\ (I(\alpha_t), I(\beta_t)) = [n] \end{array} \right.$$

Every Product polynomial may give different partition.

$$\begin{split} \mathsf{IP}(X,Y) &= \sum_{i=1}^n x_i y_i \text{ is not hard under partition} \\ \{(x_1,\ldots x_{n/2},y_1,\ldots,y_{n/2}) \bigsqcup (x_{n/2+1},\ldots,x_n,y_{n/2+1},\ldots,y_n)\}. \end{split}$$

Global Measure Via Universal Distribution

- We need a Universal distribution, under which for every nearly balanced partition, the discrepancy of Spanning Tree problem remains low.
- We transfer this discrepancy bound to a lower bound using the following novel correspondence theorem.

Global Measure Via Universal Distribution

- We need a Universal distribution, under which for every nearly balanced partition, the discrepancy of Spanning Tree problem remains low.
- We transfer this discrepancy bound to a lower bound using the following novel correspondence theorem.

 ϵ -Sensitive Monotone Lower Bound

Discrepancy-Sensitivity Correspondence

Theorem

Let Δ be a Universal distribution and f be a 0-1 set-multilinear polynomial. If the communication problem C_P^f has discrepancy at most γ w.r.t Δ for every nearly balance partition P, then the monotone complexity of $F_{n,m}-\epsilon \cdot f$ is atleast $\frac{\epsilon}{3\gamma}$ as long as $\epsilon \geq \frac{6\gamma}{1-3\gamma}$.

We construct an Universal distribution Δ s.t the discrepancy of Spanning Tree problem w.r.t Δ for every nearly balance partition is at most $2^{-\Omega(n)}$

 ϵ -Sensitive Monotone Lower Bound

Discrepancy-Sensitivity Correspondence

Theorem

Let Δ be a Universal distribution and f be a 0-1 set-multilinear polynomial. If the communication problem C_P^f has discrepancy at most γ w.r.t Δ for every nearly balance partition P, then the monotone complexity of $F_{n,m} - \epsilon \cdot f$ is atleast $\frac{\epsilon}{3\gamma}$ as long as $\epsilon \geq \frac{6\gamma}{1-3\gamma}$.

We construct an Universal distribution Δ s.t the discrepancy of Spanning Tree problem w.r.t Δ for every nearly balance partition is at most $2^{-\Omega(n)}$

Summary and Open Problems

Conclusion and Open Problems

First strongly exponential separation between Monotone-VP and VP.

First exponential size ε-sensitive lower bound against a VP polynomial.

Open Problems

Find Polynomial with polynomial size non monotone formulas and strongly exponential monotone circuit complexity.

Give sensitive lower bounds against the following polynomials, $F_{n,n} \pm \epsilon \cdot \det_{n,n}$ and $F_{n,n} \pm \epsilon \cdot \operatorname{Perm}_{n,n}$.

Arkadev C., Rajit D., Utsab G., Partha M. () Monotone Complexity of ST Polynomial

Summary and Open Problems

Conclusion and Open Problems

First strongly exponential separation between Monotone-VP and VP.

First exponential size ϵ -sensitive lower bound against a VP polynomial.

Open Problems

 Find Polynomial with polynomial size non monotone formulas and strongly exponential monotone circuit complexity.

■ Give a strongly exponential size *ϵ*-sensitive lower bound for a polynomial in VP.

Conclusion and Open Problems

First strongly exponential separation between Monotone-VP and VP.

First exponential size ϵ -sensitive lower bound against a VP polynomial.

Open Problems

Find Polynomial with polynomial size non monotone formulas and strongly exponential monotone circuit complexity.

Conclusion and Open Problems

First strongly exponential separation between Monotone-VP and VP.

First exponential size ϵ -sensitive lower bound against a VP polynomial.

Open Problems

Find Polynomial with polynomial size non monotone formulas and strongly exponential monotone circuit complexity.

Give a strongly exponential size ϵ -sensitive lower bound for a polynomial in VP.

Conclusion and Open Problems

First strongly exponential separation between Monotone-VP and VP.

First exponential size ϵ -sensitive lower bound against a VP polynomial.

Open Problems

Find Polynomial with polynomial size non monotone formulas and strongly exponential monotone circuit complexity.

Give a strongly exponential size ϵ -sensitive lower bound for a polynomial in VP.

There are more exciting open problems in our paper. We invite you to check the following link https://arxiv.org/abs/2109.06941

Thank You