Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond

Nathaniel Johnston¹

Benjamin Lovitz² Aravindan Vijayaraghavan³

- 1. Mount Allison University
- 2. NSF Postdoc, Northeastern University
 - 3. Northwestern University

WACT 2023

March 30, 2023

Northeastern University

<u>Problem</u>: Given a basis for a linear subspace $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$, determine if U is entangled, i.e. if $U \cap X_{Sep} = \{0\}$.

Applications: Quantum Information

- Range criterion: For a density operator $\rho \in D(\mathbb{C}^n \otimes \mathbb{C}^n),$ $\operatorname{Im}(\rho)$ entangled $\Rightarrow \rho$ entangled
- Entangled subspaces can be used to construct entanglement witnesses and quantum error-correcting codes

<u>Problem</u>: Given a basis for a linear subspace $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$, determine if U is entangled, i.e. if $U \cap X_{Sep} = \{0\}$.

X_{Sep}

Outline:

- 1. Algorithm (Nullstellensatz Certificate)
- 2. Algorithm to recover elements of $U \cap X_{Sep}$, with applications to tensor decompositions
 - 3. Generalization to arbitrary conic variety *X*
 - 4. Robust generalization of Hilbert's Nullstellensatz for this problem

<u>Problem</u>: Given a basis for a linear subspace $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$, determine if U is entangled, i.e. if $U \cap X_{Sep} = \{0\}$.

[Buss et al 1999]: This is NP-Hard in the worst case.

[Barak et al 2019]: Best known algorithm takes $2^{\tilde{O}(\sqrt{n})}$ time.

[Classical AG, Parthasarathy 01]: $\dim(U) > (n-1)^2 \Rightarrow U$ is not entangled

U generic and $\dim(U) \le (n-1)^2 \Rightarrow U$ is entangled

<u>Algorithm (deg. 2 N.C.)</u>: Takes poly(*n*)-time and outputs either: "Hay in a haystack problem" 1. Fail, or

2. A certificate that *U* is entangled

<u>Problem</u>: Given a basis for a linear subspace $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$, determine if U is entangled, i.e. if $U \cap X_{Sep} = \{0\}$.

[Buss et al 1999]: This is NP-Hard in the worst case.

Works-Extremely-Well Theorem [JLV 22]:

U generic and $\dim(U) \leq \frac{1}{4}(n-1)^2 \Rightarrow$ Algorithm outputs a certificate that U is entangled

U generic and $\dim(U) \le (n-1)^2 \Rightarrow U$ is entangled

<u>Algorithm (deg. 2 N.C.)</u>: Takes poly(n)-time and outputs either: "Hay in a haystack problem"

- 1. Fail, or
- 2. A certificate that *U* is entangled

The Algorithm (Nullstellensatz Certificate)

<u>Problem</u>: Given a basis for a linear subspace $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$, determine if U is entangled, i.e. if $U \cap X_{Sep} = \{0\}$.

Idea: Problem is difficult because it's non-linear

 $(X_{\text{Sep}} \subseteq \mathbb{C}^n \otimes \mathbb{C}^n \text{ isn't a linear subspace}).$

<u>Make it linear</u>: Instead check if $U \cap \text{Span}(X_{\text{Sep}}) = \{0\}$.

Works extremely well already for d = 2!

Doesn't work: Span $(X_{Sep}) = \mathbb{C}^n \otimes \mathbb{C}^n$.

Lift it up: Let
$$I(X_{\text{Sep}})_d^{\perp} = \text{Span}\{(u \otimes v)^{\otimes d}: u, v \in \mathbb{C}^n\} = S^d(\mathbb{C}^n) \otimes S^d(\mathbb{C}^n)$$

Check if
$$S^d(U) \cap I(X_{\text{Sep}})_d^{\perp} = \{0\}.$$

<u>Problem</u>: Given a basis for a linear subspace $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$, determine if U is entangled, i.e. if $U \cap X_{Sep} = \{0\}$.

Hilbert's Nullstellensatz:

 $U \cap X = \{0\} \iff$ For some $d \in \mathbb{N}$ it holds that $I(U)_d + I(X)_d = \mathbb{C}[x_{1,1}, \dots, x_{n,n}]_d$

Works extremely well already for d = 2! $I(X_{\text{Sep}})_{d}^{\perp} = \{(u \otimes v)^{\otimes d} : u, v \in \mathbb{C}^{n}\} = S^{d}(\mathbb{C}^{n}) \otimes S^{d}(\mathbb{C}^{n})$

<u>Problem</u>: Given a basis for a linear subspace $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$, determine if U is entangled, i.e. if $U \cap X_{Sep} = \{0\}$.

$$I(X_{\text{Sep}})_{2}^{\perp} := \text{Span}\{(u \otimes v)^{\otimes 2} : u, v \in \mathbb{C}^{n}\} = S^{2}(\mathbb{C}^{n}) \otimes S^{2}(\mathbb{C}^{n})$$

Takes poly(*n*) time to check

Algorithm (2nd level of Nullstellensatz certificate): If $S^2(U) \cap I(X_{\text{Sep}})_2^{\perp} = \{0\}$, output U is entangled Otherwise, output Fail

<u>Correctness:</u> $u \otimes v \in U \Rightarrow (u \otimes v)^{\otimes 2} \in S^2(U) \cap I(X_{\text{Sep}})_2^{\perp}$ \Rightarrow Algorithm outputs Fail.

Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$, determine if II is entangled i.e. if $II \cap X_{\alpha} = \{0\}$ Works-Extremely-Well Theorem [JLV 22]: U generic and $\dim(U) \leq \frac{1}{4}(n-1)^2 \Rightarrow S^2(U) \cap I(X_{\text{Sep}})_2^\perp = \{0\}.$ Takes poly(n) time to check Algorithm (2nd level of Nullstellensatz certificate): If $S^2(U) \cap I(X_{\text{Sep}})_2^{\perp} \stackrel{\checkmark}{=} \{0\}$, output U is entangled Otherwise, output Fail

<u>Correctness:</u> $u \otimes v \in U \Rightarrow (u \otimes v)^{\otimes 2} \in S^2(U) \cap I(X_{\text{Sep}})_2^{\perp}$ \Rightarrow Algorithm outputs Fail.

Algorithm runtime to certify $U \cap X_{Sep} = \{0\}$

d	$\dim(U)$	time
3	3	0.01 s
4	8	0.03 s
5	13	0.08 s
6	20	0.20 s
7	29	0.49 s
8	39	1.06 s
9	50	2.24 s
10	63	5.56 s

Analogous hierarchies for other notions of entanglement (any conic variety) Let $X \subseteq \mathbb{C}^N$ be any conic variety (for example, $X = X_{Sep} \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$)

X

<u>Problem</u>: Given a basis for a linear subspace $U \subseteq \mathbb{C}^N$, determine if U avoids X, i.e. if $U \cap X = \{0\}$. Let $X \subseteq \mathbb{C}^N$ be any conic variety (for example, $X = X_{\text{Sep}} \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$)

<u>Problem</u>: Given a basis for a linear subspace $U \subseteq \mathbb{C}^N$, determine if U avoids X, i.e. if $U \cap X = \{0\}$.

$$I(X)_d^{\perp} := \operatorname{Span}\{v^{\otimes d}: v \in X\}$$

Algorithm d: If $S^{d}(U) \cap I(X)_{d}^{\perp} = \{0\}$, output U avoids XOtherwise, output Fail

$$= \{0\}.$$
 U
X

<u>Completeness [Hilbert]</u>: For $d = 2^{O(N)}$, Fail \Leftrightarrow U intersects X

Examples <u>WEW Theorem [JLV 22]</u> : For generic U it holds that $S^d(U) \cap I$	of dimension dim $(U) \le \bigcirc$ $(X)_d^{\perp} = \{0\}$, for $d = \bigstar$
Schmidt rank $\leq r$ tensors $X_r = \{v \in \mathbb{C}^n \otimes \mathbb{C}^n : \text{Schmidt}-\text{rank}(v) \leq r\}$	
Product tensors in- X_{Sep} -arable \leftrightarrow Completely entangled $X_{Sep} = \{v_1 \otimes \cdots \otimes v_m : v_i \in \mathbb{C}^n\}$	$ \widehat{\bigcirc} \sim (1/4)n^m $
Biseparable tensors $X_B = \{v \in (\mathbb{C}^n)^{\bigotimes m} : \text{ Some bipartition of } v \text{ has rank 1} \}$	$ \widehat{\bigotimes} \sim (1/4)n^m $ $ \underset{}{\overset{}{}} = 2 $
Slice rank 1 tensors $X_S = \{v \in (\mathbb{C}^n)^{\otimes m} : \text{Some 1 v.s. rest bipartition of } v \text{ has rank 1} \}$	$ \widehat{\mathbb{K}} \sim (1/4)n^m $
Matrix product tensors of bond dimension $\leq r$ $X_{MPS} = \{v \in (\mathbb{C}^n)^{\otimes m} : \text{Every left-right bipartition has rank} \leq r\}$	

<u>WEW Theorem [JLV 22]</u>: For generic U of dimension dim $(U) \leq Q_{Q}$ Examples it holds that $S^d(U) \cap I(X)_d^{\perp} = \{0\}$, for $d = \overset{\leftrightarrow}{\mathbb{R}}$ Schmidt rank $\leq r$ tensors $\langle \Omega_{\mathcal{O}} \rangle = \Omega_r(n^2)$ $\frac{1}{2}$ = r + 1 $X_r = \{v \in \mathbb{C}^n \otimes \mathbb{C}^n : \text{Schmidt}-\text{rank}(v) \le r\}$ **Product tensors** in- X_{Sep} -arable \leftrightarrow Completely entangled $(2) \sim (1/4)n^m$ 案=2 $X_{\text{Sep}} = \{v_1 \otimes \cdots \otimes v_m : v_i \in \mathbb{C}^n\}$ Bisepara Takeaway: Algorithm certifies entanglement of subspaces $X_B = \{v \text{ of dimension a constant multiple of the maximum possible in polynomial time.} \}$ n^m Slice rank 1 tensors $X_{S} = \{v \in (\mathbb{C}^{n})^{\otimes m}: \text{Some 1 v.s. rest bipartition of } v \text{ has rank 1} \}$ Matrix product tensors of bond dimension $\leq r$ $\langle \Omega_{r} \rangle = \Omega_{r}(n^{m})$ $X_{MPS} = \{v \in (\mathbb{C}^n)^{\otimes m} : \text{Every left-right bipartition has rank} \leq r\}$ = r + 1

Derksen's proof (sketch)

*A slightly weaker WEW Theorem appears in [JLV 22] with a different proof.

<u>WEW Theorem [Derksen]*:</u> If $I \subseteq \mathbb{C}[x_1, \dots, x_N]$ is a homogeneous ideal and R is a non-negative integer such that

$$\dim I_d^\perp < \binom{N-R+d}{d},$$

then there exists an *R*-dimensional subspace $U \subseteq \mathbb{C}^D$ such that $S^d(U) \cap I_d^{\perp} = \{0\}$.

Proof sketch: By a theorem of Galligo, after a linear change of coordinates wma $J \coloneqq lm(I)$ is Borel-fixed with respect to the reverse lexicographic monomial order.

If $x_R^d \notin J_d$, then $J_d \subseteq \langle x_1, ..., x_{R-1} \rangle_d$. But then $\dim(I_d^{\perp}) = \dim(J_d^{\perp})$ $\geq \dim(\mathbb{C}[x_1, ..., x_N]_d / \langle x_1, ..., x_{R-1} \rangle_d)$ $= \binom{N-R+d}{d}$, a contradiction. So $x_R^d \in J_d$. But this implies all monomials in $x_1, ..., x_R$ of degree d lie in J. It follows that $S^d(U) \cap I_d^{\perp} = \{0\}$ for $U = \operatorname{span}\{e_1, ..., e_R\}$. Lifted Jennrich's algorithm to recover elements of $U \cap X$ (with applications to tensor decompositions) Suppose $U \subseteq \mathbb{C}^N$ has a basis $\{v_1, \dots, v_R\}$ such that each $v_i \in X$.

<u>Problem</u>: Given some other basis $\{u_1, \dots, u_R\}$ of U, recover $\{v_1, \dots, v_R\}$ (up to scale).

Example: Jennrich's Algorithm: If $U' \subseteq S^d(\mathbb{C}^N)$ is spanned by $\{v_1^{\otimes d}, \dots, v_R^{\otimes d}\}$ with $\{v_1, \dots, v_R\}$ linearly independent, then $\{v_1^{\otimes d}, \dots, v_R^{\otimes d}\}$ can be recovered from any basis of U' in $n^{O(d)}$ - time.

Lifted Jennrich's Algorithm [JLV 2022]: Run Jennrich on $U' = S^d(U) \cap I(X)_d^{\perp}$.

$$v^{\bigotimes d} \in U' \iff v \in U \cap X$$

For this to work, need:

1.
$$\{v_1^{\otimes d}, \dots, v_R^{\otimes d}\}$$
 spans U' .

Generalizes FOOBI algorithm [DLCC '07]

2. $\{v_1, \dots, v_R\}$ is linearly independent.

Suppose $U \subseteq \mathbb{C}^N$ has a basis $\{v_1, \dots, v_R\}$ such that each $v_i \in X$.

Works-Extremely-Well Theorem [JLV 22]:

Pro If $d \ge 2, X$ is irreducible, cut out in degree d, and has no equations in degree d - 1, le). then (1) and (2) hold for generic $v_1, ..., v_R \in X$ as long as $R \le \frac{\dim(I(X)_d)}{d! \binom{N+d-1}{d}} (N+d-1)$

Example: Jennrich's Algorithm: If $U' \subseteq S^{\alpha}(\mathbb{C}^n)$ is spanned by $\{v_1, \dots, v_R^{\otimes n}\}$ with $\{v_1, \dots, v_R\}$ linearly independent, then $\{v_1^{\otimes d}, \dots, v_R^{\otimes d}\}$ can be recovered from any basis of U' in $n^{O(d)}$ - time.

Lifted Jennrich's Algorithm [JLV 2022]: Run Jennrich on $U' = S^d(U) \cap I(X)_d^{\perp}$.

$$v^{\bigotimes d} \in U' \iff v \in U \cap X$$

For this to work, need:

1.
$$\{v_1^{\otimes d}, \dots, v_R^{\otimes d}\}$$
 spans U' .

Generalizes FOOBI algorithm [DLCC '07]

2. $\{v_1, \dots, v_R\}$ is linearly independent.

Suppose $U \subseteq \mathbb{C}^N$ has a basis $\{v_1, \dots, v_R\}$ such that each $v_i \in X$.

Lifted Jennrich's Algorithm [JLV 2022]: Run Jennrich on $U' = S^d(U) \cap I(X)_d^{\perp}$.

For this to work, need:

$$\frac{Compare with Derksen's result:}{S^d(U) \cap I(X)_d^{\perp}} = \{0\} \text{ for generic } v_1, \dots, v_R \in \mathbb{C}^N$$

1.
$$\{v_1^{\otimes d}, \dots, v_R^{\otimes d}\}$$
 spans U' .

2. $\{v_1, \dots, v_R\}$ is linearly independent. Q: Clean algebraic proof? Similar WEW Theorems were claimed in [DL 06, DLCC 07] for the special case $X = X_{Sep}$, but their proofs are incorrect.

le).

Application:
$$(X, \mathbb{C}^k)$$
-decompositions
For $T \in V \otimes \mathbb{C}^k$, an (X, \mathbb{C}^k) -decomposition is an expression $T = \sum_{i=1}^R v_i \otimes z_i \in V \otimes \mathbb{C}^k$

where $v_1, \ldots, v_R \in X$

rank_X(*T*): = min{*R*: there exists an (X, \mathbb{C}^k) -decomposition of T of length R}

<u>Example</u>: When $X = X_{Sep} \subseteq \mathbb{C}^n \otimes \mathbb{C}^n$, an (X, \mathbb{C}^k) -decomposition is just a tensor decomposition.

Viewing
$$T$$
 as a map $\mathbb{C}^k \to V$, each $v_i \in T(\mathbb{C}^k) \cap X$,
so computing $T(\mathbb{C}^k) \cap X \leftrightarrow (X, \mathbb{C}^k)$ -decomposing T
(Assuming that $\{z_1, \dots, z_R\}$ is linearly independent)

<u>Corollary to WEW Theorem [JLV 22]</u>: A generic tensor $T \in \mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^k$ with $\operatorname{rank}(T) \leq \min\{\frac{1}{4}(n-1)^2, k\}$

has a unique rank decomposition, which is recovered in POLY(n)-time by applying our algorithm to $T(\mathbb{C}^k)$.

In particular, a generic $n \times n \times n^2$ tensor of rank $\sim \frac{1}{4}n^2$ is recovered by algorithm.

<u>Corollary to WEW Theorem [JLV 22]</u>: A generic tensor $T \in \mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^k$ of (X_r, \mathbb{C}^k) -rank $\operatorname{rank}_{X_r}(T) \leq \min\{\Omega_r(n^2), k\}$

has a unique tensor rank decomposition, which is recovered in $n^{O(r)}$ -time by applying our algorithm to $T(\mathbb{C}^k)$.

 $T = \sum_{i} v_i \otimes w_i$, where $v_i \in X_r$

 (X_r, \mathbb{C}^k) -rank \Leftrightarrow r-aided rank \Leftrightarrow (r, r, 1)-multilinear rank

<u>Corollary to WEW Theorem [JLV 22]</u>: A generic tensor

$$\in (\mathbb{C}^n)^{\otimes m}$$
 of tensor rank
rank $(T) = O(n^{\lfloor m/2 \rfloor})$

has a unique tensor rank decomposition, which is recovered in $n^{O(m)}$ -time by applying our algorithm to $T\left((\mathbb{C}^n)^{\otimes \lfloor m/2 \rfloor}\right)$.

(This is new when m is even. When m is odd you can just use Jennrich directly.)

Robust generalization of the entanglement certification hierarchy

Robust generalization:

Instead of determining whether U avoids X, Compute $h_X(U) \coloneqq \max_{v \in X} \langle v, P_U v \rangle$ $\|v\| = 1$ $V = \operatorname{Proj}(U)$ U avoids $X \Leftrightarrow h_X(U) < 1$ <u>Theorem/Robust Hierarchy [JLV 23+]:</u> Let $X \subseteq \mathbb{C}^N$ be nice*, $U \subseteq \mathbb{C}^N$ linear, and $P_U = \operatorname{Proj}(U)$. For each d, let $\mu_d = \lambda_{\max} \left(P_X^d \left(P_U \otimes I^{\otimes d-1} \right) P_X^d \right) - P_X^d = \operatorname{Proj}(I(X)_d^{\perp})$ Then the μ_d form a non-increasing sequence converging to $h_X(U) \coloneqq \max_{\substack{v \in X \\ \|v\|=1}} \langle v, P_U v \rangle$.

Robust generalization:

Instead of determining whether U avoids X, Compute $h_X(U) \coloneqq \max_{v \in X} \langle v, P_U v \rangle$ $\|v\| = 1$ V = Proj(U)U avoids $X \Leftrightarrow h_X(U) < 1$ $\begin{array}{l} \underline{\text{Theorem/Robust Hierarchy [JLV 23+]:}}\\ \text{Let } X \subseteq \mathbb{C}^N \text{ be nice}^*, \quad W \in \text{Herm}(\mathbb{C}^N) \text{ Hermitian.} \\ & \text{*Any conic variety} \\ \text{For each } d, \text{ let } \mu_d = \lambda_{\max} \left(P_X^d \left(W \otimes I^{\otimes d-1} \right) P_X^d \right) \\ & -P_X^d = \text{Proj}(I(X)_d^{\perp}) \\ \text{Then the } \mu_d \text{ form a non-increasing sequence converging to } h_X(W) \coloneqq \max_{\substack{v \in X \\ \|v\|=1}} \langle v, Wv \rangle. \\ & \|v\|=1 \end{array}$

Robust generalization: Instead of determining whether U avoids X, Compute $h_X(U) \coloneqq \max_{\substack{v \in X \\ \|v\|=1}} \langle v, P_U v \rangle$ $\|v\|=1$ $P_U = \operatorname{Proj}(U)$ U avoids $X \iff h_X(U) < 1$ Theorem/Robust Hierarchy not only holds for P_U , but for any Hermitian W!

Conclusion

1. Complete hierarchies of linear systems to certify entanglement of a subspace. These work extremely well already at early levels.

Title: Complete hierarchy of linear systems for certifying quantum entanglement of subspaces

2. Poly-time algorithms to find low-entanglement elements of a subspace. These also work extremely well.

Title: Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond

3. Robust version of certification hierarchies to compute the distance between a variety and a linear subspace.

Title: TBD

Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond

Nathaniel Johnston¹

Benjamin Lovitz² Aravindan Vijayaraghavan³

- 1. Mount Allison University
- 2. NSF Postdoc, Northeastern University
 - 3. Northwestern University

WACT 2023

March 30, 2023

Northeastern University

