Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond

Nathaniel Johnston ${ }^{1}$ Benjamin Lovitz ${ }^{2}$ Aravindan Vijayaraghavan ${ }^{3}$

1. Mount Allison University
2. NSF Postdoc, Northeastern University
3. Northwestern University

WACT 2023

March 30, 2023

Northeastern
University

Product tensors: $X_{\text {Sep }}=\left\{u \otimes v: u, v \in \mathbb{C}^{n}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$

Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.

Applications: Quantum Information

- Range criterion: For a density operator $\rho \in D\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)$,
$\operatorname{Im}(\rho)$ entangled $\Rightarrow \rho$ entangled
- Entangled subspaces can be used to construct entanglement witnesses and quantum error-correcting codes

Product tensors: $X_{\text {Sep }}=\left\{u \otimes v: u, v \in \mathbb{C}^{n}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.

Outline:

1. Algorithm (Nullstellensatz Certificate)
$U \quad$ 2. Algorithm to recover elements of $U \cap X_{\text {Sep }}$, with applications to tensor decompositions
2. Generalization to arbitrary conic variety X
3. Robust generalization of Hilbert's Nullstellensatz for this problem

Product tensors: $X_{\text {Sep }}=\left\{u \otimes v: u, v \in \mathbb{C}^{n}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.
[Buss et al 1999]: This is NP-Hard in the worst case.
[Barak et al 2019]: Best known algorithm takes $2^{\tilde{O}(\sqrt{n})}$ time.
[Classical AG, Parthasarathy 01]: $\operatorname{dim}(U)>(n-1)^{2} \Rightarrow U$ is not entangled
U generic and $\operatorname{dim}(U) \leq(n-1)^{2} \Rightarrow U$ is entangled
Algorithm (deg. 2 N.C.): Takes poly(n)-time and outputs either: "Hay in a haystack problem" 1. Fail, or
2. A certificate that U is entangled

Product tensors: $X_{\text {Sep }}=\left\{u \otimes v: u, v \in \mathbb{C}^{n}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.
[Buss et al 1999]: This is NP-Hard in the worst case. Works-Extremely-Well Theorem [J V 22]:
U generic and $\operatorname{dim}(U) \leq \frac{1}{4}(n-1)^{2} \Rightarrow$ Algorithm outputs a certificate that U is entangled

$$
U \text { generic and } \operatorname{dim}(U) \leq(n-1)^{2} \Rightarrow U \text { is entangled }
$$

Algorithm (deg. 2 N.C.): Takes poly(n)-time and outputs either: "Hay in a haystack problem" 1. Fail, or
2. A certificate that U is entangled

The Algorithm

(Nullstellensatz Certificate)

Product tensors: $X_{\text {Sep }}=\left\{u \otimes v: u, v \in \mathbb{C}^{n}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.

Idea: Problem is difficult because it's non-linear

$$
\left(X_{\text {Sep }} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n} \text { isn't a linear subspace }\right)
$$

Make it linear: Instead check if $U \cap \operatorname{Span}\left(X_{\text {Sep }}\right)=\{0\}$.
Works extremely well already for $d=2$!
Doesn't work: $\operatorname{Span}\left(X_{\mathrm{Sep}}\right)=\mathbb{C}^{n} \otimes \mathbb{C}^{n}$.
Lift it up: Let $I\left(X_{\text {Sep }}\right)_{d}^{\perp}=\operatorname{Span}\left\{(u \otimes v)^{\otimes d}: u, v \in \mathbb{C}^{n}\right\}=S^{d}\left(\mathbb{C}^{n}\right) \otimes S^{d}\left(\mathbb{C}^{n}\right)$
Check if $S^{d}(U) \cap I\left(X_{\mathrm{Sep}}\right)_{d}^{\perp}=\{0\}$.

Product tensors: $X_{\text {Sep }}=\left\{u \otimes v: u, v \in \mathbb{C}^{n}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.
Hilbert's Nullstellensatz:
$U \cap X=\{0\} \quad \Leftrightarrow \quad$ For some $d \in \mathbb{N}$ it holds that

$$
I(U)_{d}+I(X)_{d}=\mathbb{C}\left[x_{1,1}, \ldots, x_{n, n}\right]_{d}
$$

\Leftrightarrow

$$
S^{d}(U) \cap I\left(X_{\mathrm{Sep}}\right)_{d}^{\perp}=\{0\}
$$

Works extremely well already for $d=2$!

$$
I\left(X_{\mathrm{Sep}}\right)_{d}^{\perp}=\left\{(u \otimes v)^{\otimes d}: u, v \in \stackrel{\AA}{\boldsymbol{q}} \mathbb{C}^{n}\right\}=S^{d}\left(\mathbb{C}^{n}\right) \otimes S^{d}\left(\mathbb{C}^{n}\right)
$$

Product tensors: $X_{\text {Sep }}=\left\{u \otimes v: u, v \in \mathbb{C}^{n}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, determine if U is entangled, i.e. if $U \cap X_{\text {Sep }}=\{0\}$.

$$
I\left(X_{\text {Sep }}\right)_{2}^{\perp}:=\operatorname{Span}\left\{(u \otimes v)^{\otimes 2}: u, v \in \mathbb{C}^{n}\right\}=S^{2}\left(\mathbb{C}^{n}\right) \otimes S^{2}\left(\mathbb{C}^{n}\right)
$$

Takes poly (n) time to check
Algorithm (2 $2^{\text {nd }}$ level of N/illstellensatz certificate):
If $S^{2}(U) \cap I\left(X_{\text {Sep }}\right)_{2}^{\perp}=\{0\}$, output U is entangled
Otherwise, output Fail
Correctness: $u \otimes v \in U \Rightarrow(u \otimes v)^{\otimes 2} \in S^{2}(U) \cap I\left(X_{\mathrm{Sep}}\right)_{2}^{\perp}$
\Rightarrow Algorithm outputs Fail.

Product tensors: $X_{\text {Sep }}=\left\{u \otimes v: u, v \in \mathbb{C}^{n}\right\} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, dotormino if $I I$ ic ontanolod io if $I I \cap X_{\sim}=\{\cap\}$
Works-Extremely-Well Theorem [J V 22]:
U generic and $\operatorname{dim}(U) \leq \frac{1}{4}(n-1)^{2} \Rightarrow S^{2}(U) \cap I\left(X_{\text {Sep }}\right)_{2}^{\perp}=\{0\}$.
Takes $\operatorname{poly}(n)$ time to check
Algorithm (2 $2^{\text {nd }}$ level of N/illstellensatz certificate):
If $S^{2}(U) \cap I\left(X_{\text {Sep }}\right)_{2}^{\perp}=\{0\}$, output U is entangled
Otherwise, output Fail
Correctness: $u \otimes v \in U \Rightarrow(u \otimes v)^{\otimes 2} \in S^{2}(U) \cap I\left(X_{\mathrm{Sep}}\right)_{2}^{\perp}$
\Rightarrow Algorithm outputs Fail.

Algorithm runtime to certify $U \cap X_{\text {Sep }}=\{0\}$

d	$\operatorname{dim}(U)$	time
3	3	0.01 s
4	8	0.03 s
5	13	0.08 s
6	20	0.20 s
7	29	0.49 s
8	39	1.06 s
9	50	2.24 s
10	63	5.56 s

Analogous hierarchies

for other notions of entanglement (any conic variety)

Let $X \subseteq \mathbb{C}^{N}$ be any conic variety (for example, $X=X_{\text {Sep }} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$)
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{N}$, determine if U avoids X, i.e. if $U \cap X=\{0\}$.

Let $X \subseteq \mathbb{C}^{N}$ be any conic variety (for example, $X=X_{\text {Sep }} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$)
Problem: Given a basis for a linear subspace $U \subseteq \mathbb{C}^{N}$, determine if U avoids X, i.e. if $U \cap X=\{0\}$.

$$
I(X)_{d}^{\perp}:=\operatorname{Span}\left\{v^{\otimes d}: \quad v \in X\right\}
$$

U

Algorithm d:
If $S^{d}(U) \cap I(X)_{d}^{\perp}=\{0\}$, output U avoids X
Otherwise, output Fail
Completeness [Hilbert]: For $d=2^{O(N)}$, Fail $\Leftrightarrow U$ intersects X

Examples WEW Theorem［JLV 22］：For generic U of dimension $\operatorname{dim}(U) \leq$（0） it holds that $S^{d}(U) \cap I(X) \frac{\perp}{d}=\{0\}$ ，for $d=$ 镇

Schmidt rank $\leq \boldsymbol{r}$ tensors

$X_{r}=\left\{v \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}: \operatorname{Schmidt}-\operatorname{rank}(v) \leq r\right\}$

Product tensors in－$X_{\text {Sep }}$－arable \leftrightarrow Completely entangled

$X_{\text {Sep }}=\left\{v_{1} \otimes \cdots \otimes v_{m}: v_{i} \in \mathbb{C}^{n}\right\}$

Biseparable tensors

$$
\text { in- } X_{B} \text {-arable } \leftrightarrow \text { Genuinely entangled }
$$

$X_{B}=\left\{v \in\left(\mathbb{C}^{n}\right)^{\otimes m}:\right.$ Some bipartition of v has rank 1$\}$
（20）$=\Omega_{r}\left(n^{2}\right)$
路 $=r+1$
（2）$\sim(1 / 4) n^{m}$
衫 $=2$

$$
\begin{aligned}
& \text { (2) } \sim(1 / 4) n^{m} \\
& \text { 裉 }=2
\end{aligned}
$$

Slice rank 1 tensors

$X_{S}=\left\{v \in\left(\mathbb{C}^{n}\right)^{\otimes m}\right.$ ：Some 1 v．s．rest bipartition of v has rank 1$\}$

$$
\begin{aligned}
& \text { (2) } \sim(1 / 4) n^{m} \\
& \text { 衫 }=2
\end{aligned}
$$

Matrix product tensors of bond dimension $\leq \boldsymbol{r}$

$X_{M P S}=\left\{v \in\left(\mathbb{C}^{n}\right)^{\otimes m}:\right.$ Every left－right bipartition has rank $\left.\leq r\right\}$

$$
\begin{aligned}
& \text { (2) }=\Omega_{r}\left(n^{m}\right) \\
& \text { 裉 }=r+1
\end{aligned}
$$

Examples

 WEW Theorem［JLV 22］：For generic U of dimension $\operatorname{dim}(U) \leq(0)$ it holds that $S^{d}(U) \cap I(X) \frac{1}{d}=\{0\}$ ，for $d=$ 筫
Schmidt rank $\leq \boldsymbol{r}$ tensors

$X_{r}=\left\{v \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}: \operatorname{Schmidt}-\operatorname{rank}(v) \leq r\right\}$
Product tensors \quad in－$X_{\text {Sep }}$－arable \leftrightarrow Completely entangled
$X_{\text {Sep }}=\left\{v_{1} \otimes \cdots \otimes v_{m}: v_{i} \in \mathbb{C}^{n}\right\} \quad$ 䚛 $=2$
Bisepara Takeaway：Algorithm certifies entanglement of subspaces $X_{B}=\left\{0\right.$ of dimension a constant multiple of the maximum possible \imath^{m}
（2）$=\Omega_{r}\left(n^{2}\right)$
祘 $=r+1$

Slice rank 1 tensors
$X_{S}=\left\{v \in\left(\mathbb{C}^{n}\right)^{\otimes m}:\right.$ Some 1 v．s．rest bipartition of v has rank 1$\}$

$$
\begin{aligned}
& \text { (2) } \sim(1 / 4) n^{m} \\
& \text { 綡 }=2
\end{aligned}
$$

Matrix product tensors of bond dimension $\leq \boldsymbol{r}$
$X_{M P S}=\left\{v \in\left(\mathbb{C}^{n}\right)^{\otimes m}:\right.$ Every left－right bipartition has rank $\left.\leq r\right\}$
（2）$=\Omega_{r}\left(n^{m}\right)$
䠔 $=r+1$

Derksen's proof (sketch) *A slightly weaker WEW Theorem appears in [JLV 22] with a different proof.

WEW Theorem [Derksen]*: If $I \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$ is a homogeneous ideal and R is a non-negative integer such that

$$
\operatorname{dim} I_{d}^{\perp}<\binom{N-R+d}{d}
$$

then there exists an R-dimensional subspace $U \subseteq \mathbb{C}^{D}$ such that $S^{d}(U) \cap I_{d}^{\perp}=\{0\}$.

Proof sketch: By a theorem of Galligo, after a linear change of coordinates wma $J:=\operatorname{lm}(I)$ is Borel-fixed with respect to the reverse lexicographic monomial order.
If $x_{R}^{d} \notin J_{d}$, then $J_{d} \subseteq\left\langle x_{1}, \ldots, x_{R-1}\right\rangle_{d}$. But then $\operatorname{dim}\left(I_{d}^{\perp}\right)=\operatorname{dim}\left(J_{d}^{\perp}\right)$

$$
\begin{aligned}
& \geq \operatorname{dim}\left(\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]_{d} /\left\langle x_{1}, \ldots, x_{R-1}\right\rangle_{d}\right) \\
& =\binom{N-R+d}{d}, \text { a contradiction } .
\end{aligned}
$$

So $x_{R}^{d} \in J_{d}$. But this implies all monomials in x_{1}, \ldots, x_{R} of degree d lie in J.
It follows that $S^{d}(U) \cap I_{d}^{\perp}=\{0\}$ for $U=\operatorname{span}\left\{e_{1}, \ldots, e_{R}\right\}$.

Lifted Jennrich's algorithm to recover elements of $U \cap X$ (with applications to tensor decompositions)

Suppose $U \subseteq \mathbb{C}^{N}$ has a basis $\left\{v_{1}, \ldots, v_{R}\right\}$ such that each $v_{i} \in X$.
Problem: Given some other basis $\left\{u_{1}, \ldots, u_{R}\right\}$ of U, recover $\left\{v_{1}, \ldots, v_{R}\right\}$ (up to scale).

Example: Jennrich's Algorithm: If $U^{\prime} \subseteq S^{d}\left(\mathbb{C}^{N}\right)$ is spanned by $\left\{v_{1}^{\otimes d}, \ldots, v_{R}^{\otimes d}\right\}$ with $\left\{v_{1}, \ldots, v_{R}\right\}$ linearly independent, then $\left\{v_{1}^{\otimes d}, \ldots, v_{R}^{\otimes d}\right\}$ can be recovered from any basis of U^{\prime} in $n^{O(d)}$ - time.

Lifted Jennrich's Algorithm [JLV 2022]: Run Jennrich on $U^{\prime}=S^{d}(U) \cap I(X) \frac{\perp}{d}$.

For this to work, need:

1. $\left\{v_{1}^{\otimes d}, \ldots, v_{R}^{\otimes d}\right\}$ spans U^{\prime}.
2. $\left\{v_{1}, \ldots, v_{R}\right\}$ is linearly independent.

Suppose $U \subseteq \mathbb{C}^{N}$ has a basis $\left\{v_{1}, \ldots, v_{R}\right\}$ such that each $v_{i} \in X$.
Works-Extremely-Well Theorem [J V 22]:
Pro If $d \geq 2, X$ is irreducible, cut out in degree d, and has no equations in degree $d-1$, then (1) and (2) hold for generic $v_{1}, \ldots, v_{R} \in X$ as long as $R \leq \frac{\operatorname{dim}\left(I(X)_{d}\right)}{d!\binom{N+d-1}{d}}(N+d-1)$ Example: Jennrich's Algorithm: it $U \subseteq S^{"}\left(\mathbb{C}^{*}\right)$ IS spanned by $\left\{v_{1}, \ldots, v_{R}\right\}$ With $\left\{v_{1}, \ldots, v_{R}\right\}$ linearly independent, then $\left\{v_{1}^{\otimes d}, \ldots, v_{R}^{\otimes d}\right\}$ can be recovered from any basis of U^{\prime} in $n^{O(d)}$ - time.

Lifted Jennrich's Algorithm [JLV 2022]: Run Jennrich on $U^{\prime}=S^{d}(U) \cap I(X){ }_{d}^{\perp}$.

For this to work, need:

1. $\left\{v_{1}^{\otimes d}, \ldots, v_{R}^{\otimes d}\right\}$ spans U^{\prime}.
2. $\left\{v_{1}, \ldots, v_{R}\right\}$ is linearly independent.

Suppose $U \subseteq \mathbb{C}^{N}$ has a basis $\left\{v_{1}, \ldots, v_{R}\right\}$ such that each $v_{i} \in X$

Works-Extremely-Well Theorem [J V 22]:

Pro if $d \geq 2, X$ is irreducible, cut out in degree d, and has no equations in degree $d-1$, then (1) and (2) hold for generic $v_{1}, \ldots, v_{R} \in X$ as long as $R \leq \frac{\operatorname{dim}\left(I(X)_{d}\right)}{d!\binom{N+d-1}{d}}(N+d-1)$

$$
\Delta=\{(1, \ldots, 1), \ldots,(R, \ldots, R)\}
$$

$$
\operatorname{span}\left\{v_{i_{1}} \cdots v_{i_{d}}:\left(i_{1}, \ldots, i_{d}\right) \notin \Delta\right\} \cap I(X) \frac{\perp}{d}=\{0\}
$$

for generic $v_{1}, \ldots, v_{R} \in X$.
This is equivalent to (1).
Lifted Jennrich's Algorithm [JLV 2022]: Run Jennrich on $U^{\prime}=S^{d}(U) \cap I(X)_{d}^{\perp}$.

Compare with Derksen's result:

For this to work, need: $S^{d}(U) \cap I(X) \frac{1}{d}=\{0\}$ for generic $v_{1}, \ldots, v_{R} \in \mathbb{C}^{N}$

1. $\left\{v_{1}^{\otimes d}, \ldots, v_{R}^{\otimes d}\right\}$ spans U^{\prime}.
2. $\left\{v_{1}, \ldots, v_{R}\right\}$ is linearly independent.

Q: Clean algebraic proof?

Similar WEW Theorems were claimed in [DL 06, DLCC 07] for the special case $X=X_{\text {Sep }}$, but their proofs are incorrect.

Application: $\left(X, \mathbb{C}^{k}\right)$-decompositions

For $T \in V \otimes \mathbb{C}^{k}$, an $\left(X, \mathbb{C}^{k}\right)$-decomposition is an expression $\quad T=\sum_{i=1}^{R} v_{i} \otimes z_{i} \in V \otimes \mathbb{C}^{k}$ where $v_{1}, \ldots, v_{R} \in X$
$\operatorname{rank}_{\mathrm{X}}(T):=\min \left\{R\right.$: there exists an $\left(X, \mathbb{C}^{k}\right)$-decomposition of T of length R$\}$
Example: When $X=X_{\text {Sep }} \subseteq \mathbb{C}^{n} \otimes \mathbb{C}^{n}$, an $\left(X, \mathbb{C}^{k}\right)$-decomposition is just a tensor decomposition.

Viewing T as a map $\mathbb{C}^{k} \rightarrow V$, each $v_{i} \in T\left(\mathbb{C}^{k}\right) \cap X$, so computing $T\left(\mathbb{C}^{k}\right) \cap X \leftrightarrow\left(X, \mathbb{C}^{k}\right)$-decomposing T (Assuming that $\left\{z_{1}, \ldots, z_{R}\right\}$ is linearly independent)

Corollary to WEW Theorem [JLV 22]: A generic tensor $T \in \mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{k}$ with

$$
\operatorname{rank}(T) \leq \min \left\{\frac{1}{4}(n-1)^{2}, k\right\}
$$

has a unique rank decomposition, which is recovered in $\operatorname{POLY}(\mathrm{n})$-time by applying our algorithm to $T\left(\mathbb{C}^{k}\right)$.

In particular, a generic $n \times n \times n^{2}$ tensor of rank $\sim \frac{1}{4} n^{2}$ is recovered by algorithm.

Corollary to WEW Theorem [JLV 22]: A generic tensor $T \in \mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{k}$ of $\left(X_{r}, \mathbb{C}^{k}\right)$-rank

$$
\operatorname{rank}_{X_{r}}(T) \leq \min \left\{\Omega_{r}\left(n^{2}\right), k\right\}
$$

has a unique tensor rank decomposition, which is recovered in $n^{O(r)}$-time by applying our algorithm to $T\left(\mathbb{C}^{k}\right)$.
$T=\sum_{i} v_{i} \otimes w_{i}$, where $v_{i} \in X_{r}$
$\left(X_{r}, \mathbb{C}^{k}\right)$-rank $\Leftrightarrow r$-aided rank $\Leftrightarrow(r, r, 1)$-multilinear rank

Corollary to WEW Theorem [JUV 22]: A generic tensor $T \in\left(\mathbb{C}^{n}\right)^{\otimes m}$ of tensor rank $\operatorname{rank}(T)=O\left(n^{\lfloor m / 2\rfloor}\right)$
has a unique tensor rank decomposition, which is recovered in $n^{O(m)}$-time by applying our algorithm to $T\left(\left(\mathbb{C}^{n}\right)^{\otimes\lfloor m / 2\rfloor}\right)$.
(This is new when m is even. When m is odd you can just use Jennrich directly.)

Robust generalization of the entanglement certification hierarchy

Robust generalization:

Instead of determining whether U avoids X,
Compute $h_{X}(U):=\max _{\substack{v \in X \\\|v\|=1}}\left\langle v, P_{U} v\right\rangle$
U avoids $X \Leftrightarrow h_{X}(U)<1$

Theorem/Robust Hierarchy [JLV 23+]:
Let $X \subseteq \mathbb{C}^{N}$ be nice*, $U \subseteq \mathbb{C}^{N}$ linear, and $P_{U}=\operatorname{Proj}(U)$.
*Any conic variety
For each d, let $\mu_{d}=\lambda_{\text {max }}\left(P_{X}^{d}\left(P_{U} \otimes I^{\otimes d-1}\right) P_{X}^{d}\right)$.一 $P_{X}^{d}=\operatorname{Proj}\left(I(X)_{d}^{\perp}\right)$
Then the μ_{d} form a non-increasing sequence converging to $h_{X}(U):=\max _{v \in X}\left\langle v, P_{U} v\right\rangle$. $\|v\|=1$

Robust generalization:

Instead of determining whether U avoids X,
Compute $h_{X}(U):=\max _{v \in X}\left\langle v, P_{U} v\right\rangle$
$\|v\|=1$

$$
P_{U}=\operatorname{Proj}(U)
$$

U avoids $X \Leftrightarrow h_{X}(U)<1$

Theorem/Robust Hierarchy [JLV 23+]:
Let $X \subseteq \mathbb{C}^{N}$ be nice*, $W \in \operatorname{Herm}\left(\mathbb{C}^{N}\right)$ Hermitian.
*Any conic variety
For each d, let $\mu_{d}=\lambda_{\text {max }}\left(P_{X}^{d}\left(W \otimes I^{\otimes d-1}\right) P_{X}^{d}\right) . P_{X}^{d}=\operatorname{Proj}\left(I(X)_{d}^{\perp}\right)$
Then the μ_{d} form a non-increasing sequence converging to $h_{X}(W):=\max _{\substack{v \in X \\\|v\|=1}}\langle v, W v\rangle$.

Robust generalization:

Instead of determining whether U avoids X,
Compute $h_{X}(U):=\max _{v \in X}\left\langle v, P_{U} v\right\rangle$
$\|v\|=1$

$$
P_{U}=\operatorname{Proj}(U)
$$

U avoids $X \Leftrightarrow h_{X}(U)<1$

Theorem/Robust Hierarchy not only holds for P_{U}, but for any Hermitian W !

Conclusion

1. Complete hierarchies of linear systems to certify entanglement of a subspace. These work extremely well already at early levels.

Title: Complete hierarchy of linear systems for certifying quantum entanglement of subspaces
2. Poly-time algorithms to find low-entanglement elements of a subspace. These also work extremely well.

Title: Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond
3. Robust version of certification hierarchies to compute the distance between a variety and a linear subspace.

Title: TBD

Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond

Nathaniel Johnston ${ }^{1}$ Benjamin Lovitz ${ }^{2}$ Aravindan Vijayaraghavan ${ }^{3}$

1. Mount Allison University
2. NSF Postdoc, Northeastern University
3. Northwestern University

WACT 2023

March 30, 2023

Northeastern
University

