# Degree-Restricted Strength Decompositions and Algebraic Branching Programs 

Fulvio Gesmundo (Saarland University)<br>Purnata Ghosal, Christian Ikenmeyer (University of Warwick)<br>Vladimir Lysikov (University of Copenhagen)

WACT 2023
27.03.2023

## Homogeneous algebraic branching programs

We consider homogeneous algebraic branching programs with linear forms on edges


## Homogeneous algebraic branching programs

We consider homogeneous algebraic branching programs with linear forms on edges


- Weight of a path is the product of all labels on this path
- The polynomial computed by an ABP is the sum of weights over all paths from the source to the sink
- ABP size is the number of internal vertices


## Algebraic branching programs

- Computational power of algebraic branching programs is intermediate between formulas and circuits
- The model is very convenient algebraically because ABPs are connected to iterated matrix multiplication
- Concatenation of paths is the same as matrix multiplication



## Algebraic branching programs in noncommutative setting

- Algebraic branching programs were first formally introduced by Nisan in the noncommutative setting
- Noncommutative ABPs are very rigid and have a very nice algebraic characterization
- Nisan computes the noncommutative ABP complexity exactly in terms of ranks of partial derivative matrices
N. Nisan. Lower Bounds for Non-Commutative Computation: Extended Abstract. STOC'91


## Algebraic branching programs in commutative setting

- Commutative algebraic branching programs are more complicated
- A quadratic lower bound for homogeneous ABPs was proven by Kumar

```
Theorem (Kumar)
homABP-size( }\mp@subsup{x}{1}{d}+\mp@subsup{x}{2}{d}+\cdots+\mp@subsup{x}{n}{d})\geq(d-1)\lceil\frac{n}{2}
```

- Chatterjee, She, Kumar and Volk extend this bound to non-homogeneous ABPs
M. Kumar. A Quadratic Lower Bound for Homogeneous Algebraic Branching Programs. CCC 2017 / comput. complex. 28(3)
P. Chatterjee, M. Kumar, A. She, and B. L. Volk. A Quadratic Lower Bound for Algebraic Branching Programs. CCC 2020


## Algebraic branching programs and decompositions

- A path from the source to the sink contains a vertex in layer $k$
- This gives a decomposition of the form

$$
F=\sum_{j=1}^{r} G_{j} H_{j}
$$

- $G_{j}, H_{j}$ are homogeneous, $\operatorname{deg} G_{j}=k$, $\operatorname{deg} H_{j}=d-k$
- Number of summands is equal to the number of vertices in layer $k$


$$
F=
$$

## Algebraic branching programs and decompositions

- A path from the source to the sink contains a vertex in layer $k$
- This gives a decomposition of the form

$$
F=\sum_{j=1}^{r} G_{j} H_{j}
$$

- $G_{j}, H_{j}$ are homogeneous, $\operatorname{deg} G_{j}=k$, $\operatorname{deg} H_{j}=d-k$
- Number of summands is equal to the number of vertices in layer $k$


$$
F=\left(x^{2}+5 y z\right) \cdot x
$$

## Algebraic branching programs and decompositions

- A path from the source to the sink contains a vertex in layer $k$
- This gives a decomposition of the form

$$
F=\sum_{j=1}^{r} G_{j} H_{j}
$$

- $G_{j}, H_{j}$ are homogeneous, $\operatorname{deg} G_{j}=k$, $\operatorname{deg} H_{j}=d-k$
- Number of summands is equal to the number of vertices in layer $k$


$$
F=\left(x^{2}+5 y z\right) \cdot x+2 y^{2} \cdot y
$$

## Algebraic branching programs and decompositions

- A path from the source to the sink contains a vertex in layer $k$
- This gives a decomposition of the form

$$
F=\sum_{j=1}^{r} G_{j} H_{j}
$$

$\downarrow G_{j}, H_{j}$ are homogeneous, $\operatorname{deg} G_{j}=k$, $\operatorname{deg} H_{j}=d-k$

- Number of summands is equal to the number of vertices in layer $k$


$$
F=\left(x^{2}+5 y z\right) \cdot x+2 y^{2} \cdot y+\left(10 x z-5 z^{2}\right) \cdot(2 x+z)
$$

## Rank decompositions in noncommutative case

- In the noncommutative case: write

$$
F=\sum f_{\mathrm{ab}}\left(x_{a_{1}} \otimes \cdots \otimes x_{a_{k}}\right) \otimes\left(x_{b_{1}} \otimes \cdots \otimes x_{b_{d-k}}\right)
$$

- Construct a matrix $F_{k}=\left(f_{\mathrm{ab}}\right)$
$\nabla F=\sum_{j=1}^{r} G_{j} \otimes H_{j}$ correspond to rank decompositions of this matrix
- This proves a lower bound part of Nisan's result


## Strength decompositions

- In the commutative case:
- Decompositions $F=\sum_{j=1}^{r} G_{j} H_{j}$ with homogeneous $G_{j}$ and $H_{j}$ were studied before in algebra and algebraic geometry
- The minimal number of summands in such a decomposition is called the strength $\operatorname{str}(F)$

```
Theorem
homABP-size}(F)\geq(d-1)\cdot\operatorname{str}(F
```

- We define $k$-restricted strength $\operatorname{str}_{k}(F)$ as the minimal number of summands in a strength decomposition with $\operatorname{deg} G_{j}=k$


## Theorem $\operatorname{homABP}-\operatorname{size}(F) \geq \sum_{k=1}^{d-1} \operatorname{str}_{k}(F)$

- A special case is the slice rank of a polynomial $\operatorname{str}_{1}(F)$


## Strength and singular locus

## Definition

The singular locus $\operatorname{Sing}(F)$ is the variety defined by equations $\frac{\partial F}{\partial x_{i}}=0$.
> If $F=\sum_{j=1}^{r} G_{j} H_{j}$, then $\frac{\partial F}{\partial x_{i}}=\sum_{j=1}^{r}\left[G_{j} \frac{\partial H_{j}}{\partial x_{i}}+H_{j} \frac{\partial G_{j}}{\partial x_{i}}\right]$

- If all $G_{j}=H_{j}=0$, then all $\frac{\partial F}{\partial x_{i}}=0$
- $2 r \geq \operatorname{codim} \operatorname{Sing}(F)$


## Theorem

$\operatorname{str}(F) \geq \frac{1}{2} \operatorname{codim} \operatorname{Sing}(F)$

- This is the essence of Kumar's lower bound
- This cannot give bounds better than $\operatorname{str}(F) \geq\left\lceil\frac{N}{2}\right\rceil$, where $N$ is the number of variables
- Can we do better?


## Degree-restricted strength and subvarieties

- Suppose $F=\sum_{j=1}^{r} G_{j} H_{j}$.
- Let $Z$ be the hypersurface defined by $F=0$.
- $Z$ contains the variety $X=\left\{G_{1}=\cdots=G_{r}=0\right\}$
- If $\operatorname{deg} G_{j}=k$, then the degree of $X$ is at most $k^{r}$ (essentially by Bezout theorem)


## Theorem

If $Z$ does not contain linear subspaces of codimension $c$, then

$$
\operatorname{str}_{1}(F) \geq c+1
$$

If $Z$ does not contain subvarieties of codimension $c$ and degree $<s$, then

$$
\operatorname{str}_{k}(F) \geq \min \left\{c+1, \log _{k} s\right\}
$$

## Result for explicit polynomials

- Consider the polynomials

$$
P_{n, d}=x_{0}^{d}+x_{1} x_{2}^{d-1}+x_{3} x_{4}^{d-1}+\cdots+x_{2 n-1} x_{2 n}^{d-1}
$$

- The number of variables is $N=2 n+1$
- Singular locus lower bound gives $\operatorname{str}\left(P_{n, d}\right) \geq\left\lceil\frac{n+1}{2}\right\rceil \approx \frac{N}{4}$


## Theorem

$$
\begin{aligned}
& \operatorname{str}_{1}\left(P_{n, d}\right)=n+1 \approx \frac{N}{2} \\
& \operatorname{str}_{k}\left(P_{n, d}\right) \geq \min \left\{n+1, \log _{k} d\right\}
\end{aligned}
$$

This improves Kumar's lower bound $\approx(d+1) \frac{N}{4}$ by additive term

$$
\approx \frac{N}{2}+\frac{N}{2} \cdot d^{\mathrm{const} / N}
$$

## Intersection theory

- We use intersection theory to prove the result on $P_{n, d}$
- For a variety $Z$, the Chow group $\mathrm{CH}_{a}(Z)$ consists of formal linear combinations of dimension a irreducible subvarieties modulo an equivalence relation called rational equivalence
- Rational equivalence can be though of as an existence of a certain kind of deformation from one collection of varieties to another


## Intersection theory

- We use intersection theory to prove the result on $P_{n, d}$
- For a variety $Z$, the Chow group $\mathrm{CH}_{a}(Z)$ consists of formal linear combinations of dimension a irreducible subvarieties modulo an equivalence relation called rational equivalence
- Rational equivalence can be though of as an existence of a certain kind of deformation from one collection of varieties to another



## Intersection theory

- We use intersection theory to prove the result on $P_{n, d}$
- For a variety $Z$, the Chow group $\mathrm{CH}_{a}(Z)$ consists of formal linear combinations of dimension a irreducible subvarieties modulo an equivalence relation called rational equivalence
- Rational equivalence can be though of as an existence of a certain kind of deformation from one collection of varieties to another


## Lemma

There is a homomorphism $\mathrm{CH}_{a}\left(P_{n, d}\right) \rightarrow \mathrm{CH}_{a+1}\left(P_{n+1, d}\right)$, which preserves the degree

## Shioda polynomials and slice rank

- Consider the polynomials

$$
S_{n, d}=x_{0} x_{1}^{d-1}+x_{1} x_{2}^{d-1}+\cdots+x_{n-1} x_{n}^{d-1}+x_{n} x_{0}^{d-1}+x_{n+1}^{d}
$$

- The number of variables is $N=n+2$
- We call them Shioda polynomials because they were studied by Shioda in intersection theory
- The singular locus lower bound is $\operatorname{str}\left(S_{n, d}\right) \geq\left\lceil\frac{N}{2}\right\rceil$
- For $S_{4, d}$ we have $\operatorname{str}\left(S_{4, d}\right) \geq 3$


## Theorem

$\operatorname{str}_{1}\left(S_{4, d}\right)=4$

- This is the first lower bound better than $\left\lceil\frac{N}{2}\right\rceil$ for an explicit polynomial
- This improves the Kumar's lower bound on hom. ABP size by +2


## Open questions

- Is analysis of subvarieties useful for other complexity questions?
- Can we determine the exact complexity of $P_{n, d}$ and $S_{n, d}$ ?
- Can we at least prove $\operatorname{str}_{1}\left(S_{n, d}\right)=\frac{n+1}{2}+1$ for all even $n$ ?
- Is computing strength NP-hard?
- Does existence of explicit polynomials with high strength have complexity implications?

