Degree-Restricted Strength Decompositions and Algebraic Branching Programs

Fulvio Gesmundo (Saarland University) Purnata Ghosal, Christian Ikenmeyer (University of Warwick) Vladimir Lysikov (University of Copenhagen)

> WACT 2023 27.03.2023

Homogeneous algebraic branching programs

We consider homogeneous algebraic branching programs with linear forms on edges

Homogeneous algebraic branching programs

We consider homogeneous algebraic branching programs with linear forms on edges

Weight of a path is the product of all labels on this path

- The polynomial computed by an ABP is the sum of weights over all paths from the source to the sink
- ABP size is the number of internal vertices

Gesmundo, Ghosal, Ikenmeyer, Lysikov

deg-restricted strength and ABPs

Algebraic branching programs

- Computational power of algebraic branching programs is intermediate between formulas and circuits
- The model is very convenient algebraically because ABPs are connected to iterated matrix multiplication
- Concatenation of paths is the same as matrix multiplication

- Algebraic branching programs were first formally introduced by Nisan in the noncommutative setting
- Noncommutative ABPs are very rigid and have a very nice algebraic characterization
- Nisan computes the noncommutative ABP complexity exactly in terms of ranks of partial derivative matrices

N. Nisan. Lower Bounds for Non-Commutative Computation: Extended Abstract. STOC'91

4/14

Algebraic branching programs in commutative setting

- Commutative algebraic branching programs are more complicated
- A quadratic lower bound for homogeneous ABPs was proven by Kumar

Theorem (Kumar)

homABP-size
$$(x_1^d + x_2^d + \dots + x_n^d) \ge (d-1)\lceil \frac{n}{2} \rceil$$

Chatterjee, She, Kumar and Volk extend this bound to non-homogeneous ABPs

M. Kumar. A Quadratic Lower Bound for Homogeneous Algebraic Branching Programs. CCC 2017 / comput. complex. 28(3) P. Chatterjee, M. Kumar, A. She, and B. L. Volk. A Quadratic Lower Bound for Algebraic Branching Programs. CCC 2020

- A path from the source to the sink contains a vertex in layer k
- This gives a decomposition of the form

$$F = \sum_{j=1}^{r} G_j H_j$$

- G_j, H_j are homogeneous, deg $G_j = k$, deg $H_j = d k$
- Number of summands is equal to the number of vertices in layer k

- A path from the source to the sink contains a vertex in layer k
- This gives a decomposition of the form

$$F = \sum_{j=1}^{r} G_j H_j$$

- G_j, H_j are homogeneous, deg $G_j = k$, deg $H_j = d k$
- Number of summands is equal to the number of vertices in layer k

 $F = (x^2 + 5yz) \cdot x$

- A path from the source to the sink contains a vertex in layer k
- This gives a decomposition of the form

$$F = \sum_{j=1}^{r} G_j H_j$$

- G_j, H_j are homogeneous, deg $G_j = k$, deg $H_j = d k$
- Number of summands is equal to the number of vertices in layer k

 $F = (x^2 + 5yz) \cdot x + 2y^2 \cdot y$

- A path from the source to the sink contains a vertex in layer k
- This gives a decomposition of the form

$$F = \sum_{j=1}^{r} G_j H_j$$

- G_j, H_j are homogeneous, deg $G_j = k$, deg $H_j = d k$
- Number of summands is equal to the number of vertices in layer k

 $F = (x^2 + 5yz) \cdot x + 2y^2 \cdot y + (10xz - 5z^2) \cdot (2x + z)$

In the noncommutative case: write

$$\mathcal{F} = \sum f_{\mathsf{ab}} \left(x_{\mathsf{a}_1} \otimes \cdots \otimes x_{\mathsf{a}_k} \right) \otimes \left(x_{b_1} \otimes \cdots \otimes x_{b_{d-k}} \right)$$

• Construct a matrix
$$F_k = (f_{ab})$$

F = ∑_{j=1}^r G_j ⊗ H_j correspond to rank decompositions of this matrix
This proves a lower bound part of Nisan's result

Strength decompositions

- In the commutative case:
- ▶ Decompositions $F = \sum_{j=1}^{r} G_j H_j$ with homogeneous G_j and H_j were studied before in algebra and algebraic geometry
- The minimal number of summands in such a decomposition is called the strength str(F)

Theorem

 $homABP-size(F) \ge (d-1) \cdot str(F)$

We define k-restricted strength str_k(F) as the minimal number of summands in a strength decomposition with deg G_j = k

Theorem

$$\mathsf{homABP}\operatorname{-size}(F) \geq \sum_{k=1}^{d-1} \mathsf{str}_k(F)$$

A special case is the *slice rank* of a polynomial $str_1(F)$

Strength and singular locus

Definition

The singular locus Sing(F) is the variety defined by equations $\frac{\partial F}{\partial x} = 0$.

▶ If
$$F = \sum_{j=1}^{r} G_j H_j$$
, then $\frac{\partial F}{\partial x_i} = \sum_{j=1}^{r} \left[G_j \frac{\partial H_j}{\partial x_i} + H_j \frac{\partial G_j}{\partial x_i} \right]$

▶ If all
$$G_j = H_j = 0$$
, then all $\frac{\partial F}{\partial x_i} = 0$

•
$$2r \ge \operatorname{codim} \operatorname{Sing}(F)$$

Theorem

$str(F) \geq \frac{1}{2} \operatorname{codim} \operatorname{Sing}(F)$

- This is the essence of Kumar's lower bound
- ▶ This cannot give bounds better than $str(F) \ge \lceil \frac{N}{2} \rceil$, where N is the number of variables
- Can we do better?

Degree-restricted strength and subvarieties

• Suppose
$$F = \sum_{j=1}^{r} G_j H_j$$
.

- Let Z be the hypersurface defined by F = 0.
- \blacktriangleright Z contains the variety $X = \{G_1 = \cdots = G_r = 0\}$
- If deg G_j = k, then the degree of X is at most k^r (essentially by Bezout theorem)

Theorem

If Z does not contain linear subspaces of codimension c, then $\label{eq:str1} \mathsf{str}_1(F) \geq c+1$

If Z does not contain subvarieties of codimension c and degree < s, then $\operatorname{str}_k(F) \ge \min\{c+1, \log_k s\}$

Result for explicit polynomials

Consider the polynomials

$$P_{n,d} = x_0^d + x_1 x_2^{d-1} + x_3 x_4^{d-1} + \dots + x_{2n-1} x_{2n}^{d-1}$$

• The number of variables is N = 2n + 1

▶ Singular locus lower bound gives $str(P_{n,d}) \ge \lceil \frac{n+1}{2} \rceil \approx \frac{N}{4}$

Theorem

$$\operatorname{str}_1(P_{n,d}) = n + 1 \approx \frac{N}{2}$$
$$\operatorname{str}_k(P_{n,d}) \ge \min\{n + 1, \log_k d\}$$

• This improves Kumar's lower bound $\approx (d+1)rac{N}{4}$ by additive term

$$pprox rac{N}{2} + rac{N}{2} \cdot d^{ ext{const}/N}$$

Gesmundo, Ghosal, Ikenmeyer, Lysikov

Intersection theory

- We use intersection theory to prove the result on $P_{n,d}$
- For a variety Z, the Chow group CH_a(Z) consists of formal linear combinations of dimension a irreducible subvarieties modulo an equivalence relation called rational equivalence
- Rational equivalence can be though of as an existence of a certain kind of deformation from one collection of varieties to another

Intersection theory

- We use intersection theory to prove the result on $P_{n,d}$
- For a variety Z, the Chow group CH_a(Z) consists of formal linear combinations of dimension a irreducible subvarieties modulo an equivalence relation called rational equivalence
- Rational equivalence can be though of as an existence of a certain kind of deformation from one collection of varieties to another

Intersection theory

- We use intersection theory to prove the result on $P_{n,d}$
- For a variety Z, the Chow group CH_a(Z) consists of formal linear combinations of dimension a irreducible subvarieties modulo an equivalence relation called rational equivalence
- Rational equivalence can be though of as an existence of a certain kind of deformation from one collection of varieties to another

Lemma

There is a homomorphism $CH_a(P_{n,d}) \rightarrow CH_{a+1}(P_{n+1,d})$, which preserves the degree

Shioda polynomials and slice rank

Consider the polynomials

$$S_{n,d} = x_0 x_1^{d-1} + x_1 x_2^{d-1} + \dots + x_{n-1} x_n^{d-1} + x_n x_0^{d-1} + x_{n+1}^d$$

- The number of variables is N = n + 2
- We call them Shioda polynomials because they were studied by Shioda in intersection theory
- ▶ The singular locus lower bound is $str(S_{n,d}) \ge \lceil \frac{N}{2} \rceil$
- For $S_{4,d}$ we have $str(S_{4,d}) \ge 3$

Theorem

 $\operatorname{str}_1(S_{4,d}) = 4$

- ▶ This is the first lower bound better than $\lceil \frac{N}{2} \rceil$ for an explicit polynomial
- > This improves the Kumar's lower bound on hom. ABP size by +2

Gesmundo, Ghosal, Ikenmeyer, Lysikov

deg-restricted strength and ABPs

- Is analysis of subvarieties useful for other complexity questions?
- Can we determine the exact complexity of $P_{n,d}$ and $S_{n,d}$?
- Can we at least prove str₁ $(S_{n,d}) = \frac{n+1}{2} + 1$ for all even *n*?
- Is computing strength NP-hard?
- Does existence of explicit polynomials with high strength have complexity implications?