Schur Polynomials do not have small formulas if the Determinant doesn't

Chandra Kanta Mohapatra
IIT Bombay

Joint work with

Prasad Chaugule, Mrinal Kumar, Nutan Limaye, Adrian She \& Srikanth Srinivasan

WACT 2023
University of Warwick

Talk Outline

(a) Preliminaries
(b) Introduction and prior work
(c) Main results
(d) Proof sketch
(e) Open questions

Prelims: Circuits, Formulas and ABPs

Algebraic circuit
Output: $2 x_{1} x_{2}+3 x_{2} x_{3}$

Prelims: Circuits, Formulas and ABPs

Algebraic Formula
Output: $2 x_{1} x_{2}+3 x_{3}$

Prelims: Circuits, Formulas and ABPs

Algebraic Branching Program

Output: $2 x_{1} x_{2}+x_{1} x_{4}+x_{2} x_{3}$

Introduction: Symmetric Polynomials

$f_{\text {sym }}(\mathbf{x})=f_{\text {sym }}\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)$ under any permutation $\sigma \in S_{n}$.

Introduction: Symmetric Polynomials

$f_{\text {sym }}(\mathbf{x})=f_{\text {sym }}\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)$ under any permutation $\sigma \in S_{n}$.
$f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$ is symmetric but $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}$ is not.

Introduction: Symmetric Polynomials

The elementary symmetric polynomial $\left(e_{d}\right)$ is the sum of all multilinear monomials of degree exactly d.

$$
e_{d}=\sum_{i_{1}<i_{2}<\ldots<i_{d}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{d}}
$$

Introduction: Symmetric Polynomials

The elementary symmetric polynomial $\left(e_{d}\right)$ is the sum of all multilinear monomials of degree exactly d.

$$
\begin{gathered}
e_{d}=\sum_{i_{1}<i_{2}<\ldots<i_{d}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{d}} \\
e_{2}\left(x_{1}, x_{2}\right)=x_{1} x_{2}
\end{gathered}
$$

Introduction: Symmetric Polynomials

The elementary symmetric polynomial $\left(e_{d}\right)$ is the sum of all multilinear monomials of degree exactly d.

$$
\begin{gathered}
e_{d}=\sum_{i_{1}<i_{2}<\ldots<i_{d}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{d}} \\
e_{2}\left(x_{1}, x_{2}\right)=x_{1} x_{2}
\end{gathered}
$$

The homogeneous(Complete) symmetric polynomial $\left(h_{d}\right)$ is the sum of all monomials of degree exactly d.

$$
h_{d}=\sum_{i_{1} \leq i_{2} \leq \ldots \leq i_{d}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{d}}
$$

Introduction: Symmetric Polynomials

The elementary symmetric polynomial $\left(e_{d}\right)$ is the sum of all multilinear monomials of degree exactly d.

$$
\begin{aligned}
e_{d}= & \sum_{i_{1}<i_{2}<\ldots<i_{d}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{d}} \\
& e_{2}\left(x_{1}, x_{2}\right)=x_{1} x_{2}
\end{aligned}
$$

The homogeneous(Complete) symmetric polynomial $\left(h_{d}\right)$ is the sum of all monomials of degree exactly d.

$$
\begin{gathered}
h_{d}=\sum_{i_{1} \leq i_{2} \leq \ldots \leq i_{d}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{d}} \\
h_{2}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}
\end{gathered}
$$

Introduction

[Lipton-Regan '09] complexity of symmetric polynomials

complexity of polynomials in general

Introduction

Fundamental theorem of symmetric polynomials
For any $f_{\text {sym }} \in \mathbb{C}\left[x_{1}, x_{2} \ldots x_{n}\right]$, there exists a unique $f \in \mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{n}\right]$ such that $f_{\text {sym }}=f\left(e_{1}, e_{2} \ldots, e_{n}\right)$

$$
e_{d} \xlongequal{\text { def }} \text { elementary symmetric poly of } \operatorname{deg} d
$$

Assumption Complex field

How the complexity of f and $f_{\text {sym }}$ are related?

Introduction

$C(f) \xlongequal{\text { def }}$ Circuit size of ' f '

$$
n \xlongequal{\text { def }} \text { Number of variables }
$$

Introduction

$$
\begin{aligned}
& C(f) \xlongequal{\text { def }} \text { Circuit size of ' } f \text { ' } \\
& n \xlongequal{\text { def }} \text { Number of variables }
\end{aligned}
$$

$$
C\left(f_{\text {sym }}\right) \leq C(f)+n^{\mathcal{O}(1)}
$$

Introduction

$$
\begin{aligned}
& C(f) \xlongequal{\text { def }} \text { Circuit size of ' } f \text { ' } \\
& n \xlongequal{\text { def }} \text { Number of variables }
\end{aligned}
$$

$$
C\left(f_{\text {sym }}\right) \leq C(f)+n^{\mathcal{O}(1)}
$$

or

$$
\begin{aligned}
& C(f) \xlongequal{\text { def }} \text { Circuit size of ' } f \text { ' } \\
& n \xlongequal{\text { def }} \text { Number of variables }
\end{aligned}
$$

$$
C\left(f_{\text {sym }}\right) \leq C(f)+n^{\mathcal{O}(1)}
$$

or

$$
C(f) \leq C\left(f_{\text {sym }}\right)+n^{\mathcal{O}(1)}
$$

Introduction

$$
C\left(f_{\text {sym }}\right) \leq C(f)+n^{\mathcal{O}(1)}
$$

Introduction

$$
\begin{gathered}
C\left(f_{\text {sym }}\right) \leq C(f)+n^{\mathcal{O}(1)} \\
\quad \text { or }
\end{gathered}
$$

[Lipton-Regan '09] ? $\quad C(f) \leq C\left(f_{\text {sym }}\right)+n^{\mathcal{O}(1)}$

Introduction

$$
\begin{gathered}
C\left(f_{\text {sym }}\right) \leq C(f)+n^{\mathcal{O}(1)} \\
\text { and } \\
\left(\text { If true! } \quad C(f) \leq C\left(f_{\text {sym }}\right)+n^{\mathcal{O}(1)}\right.
\end{gathered}
$$

Introduction

$$
\begin{gathered}
C\left(f_{\text {sym }}\right) \leq C(f)+n^{\mathcal{O}(1)} \\
\text { and } \\
(I f \text { true! }) \quad C(f) \leq C\left(f_{\text {sym }}\right)+n^{\mathcal{O}(1)} \\
\downarrow
\end{gathered}
$$

Introduction

$$
\begin{gathered}
C\left(f_{\text {sym }}\right) \leq C(f)+n^{\mathcal{O}(1)} \\
\text { and } \\
(I f \text { true! }) \quad C(f) \leq C\left(f_{\text {sym }}\right)+n^{\mathcal{O}(1)} \\
\downarrow \\
C(f)=C\left(f_{\text {sym }}\right)+n^{\mathcal{O}(1)}
\end{gathered}
$$

Introduction

$$
\begin{gathered}
C\left(f_{\text {sym }}\right) \leq C(f)+n^{\mathcal{O}(1)} \\
\text { and } \\
(\text { If true! }) \quad C(f) \leq C\left(f_{\text {sym }}\right)+n^{\mathcal{O}(1)} \\
\downarrow \\
C(f)=C\left(f_{\text {sym }}\right)+n^{\mathcal{O}(1)}
\end{gathered}
$$

[Bläser-Jindal '18] answers this affirmatively.

Introduction

$$
\begin{gathered}
C\left(f_{\text {sym }}\right) \leq C(f)+n^{\mathcal{O}(1)} \\
\text { and } \\
(\text { If true! }) \quad C(f) \leq C\left(f_{\text {sym }}\right)+n^{\mathcal{O}(1)} \\
\Downarrow \\
C(f)=C\left(f_{\text {sym }}\right)+n^{\mathcal{O}(1)}
\end{gathered}
$$

[Bläser-Jindal '18] answers this affirmatively.

only for circuits

Introduction

$$
\begin{gathered}
C\left(f_{\text {sym }}\right) \leq C(f)+n^{\mathcal{O}(1)} \\
\text { and } \\
(I f \text { true! }) \quad C(f) \leq C\left(f_{\text {sym }}\right)+n^{\mathcal{O}(1)} \\
\downarrow \\
C(f)=C\left(f_{\text {sym }}\right)+n^{\mathcal{O}(1)}
\end{gathered}
$$

[Bläser-Jindal '18] $C(f) \leq \mathcal{O}\left(d^{2} C\left(f_{\text {sym }}\right)+d^{2} n^{2}\right) \quad(d \xlongequal{\text { def }} \operatorname{deg}(f))$

Introduction

$$
\begin{gathered}
C\left(f_{\text {sym }}\right) \leq C(f)+n^{\mathcal{O}(1)} \\
\text { and } \\
\left(\text { If true! } \quad C(f) \leq C\left(f_{\text {sym }}\right)+n^{\mathcal{O}(1)}\right. \\
\\
C(f)=C\left(f_{\text {sym }}\right)+n^{\mathcal{O}(1)}
\end{gathered}
$$

[Bläser-Jindal '18] $C(f) \leq \mathcal{O}\left(d^{2} C\left(f_{\text {sym }}\right)+d^{2} n^{2}\right) \quad(d \xlongequal{\text { def }} \operatorname{deg}(f))$
Can we prove a similar statement for the ABPs (Formulas)?

Our result for Formulas

[Bläser-Jindal '18] For any polynomial $f \in \mathbb{C}[\mathbf{x}]$ of deg d where $f_{\text {sym }}=f\left(e_{1}, \ldots, e_{n}\right)$,

$$
C(f) \leq \mathcal{O}\left(d^{2} C\left(f_{\text {sym }}\right)+d^{2} n^{2}\right)
$$

Our result for Formulas

[Bläser-Jindal '18] For any polynomial $f \in \mathbb{C}[\mathbf{x}]$ of deg d where $f_{\text {sym }}=f\left(e_{1}, \ldots, e_{n}\right)$,

$$
C(f) \leq \mathcal{O}\left(d^{2} C\left(f_{\text {sym }}\right)+d^{2} n^{2}\right)
$$

[This work] There exists $b \in \mathbb{C}^{n}$, s.t. for any homogeneous polynomial $f \in \mathbb{C}[\mathbf{x}]$ of $\operatorname{deg} d$, if $f_{\text {sym }}=f\left(e_{1}-b_{1}, \ldots, e_{n}-b_{n}\right)$ then,

$$
\begin{gathered}
L(f) \leq \mathcal{O}\left(L\left(f_{\text {sym }}\right)^{2} n\right) \\
L(f) \xlongequal{\text { def }} \text { formula size of ' } f \text { ' }
\end{gathered}
$$

Generalized Vandermonde Matrix

Principal Vandermonde Matrix

$$
V_{n}=\left(\begin{array}{cccc}
x_{1}^{n-1} & x_{2}^{n-1} & \ldots & x_{n}^{n-1} \\
x_{1}^{n-2} & x_{2}^{n-2} & \ldots & x_{n}^{n-2} \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & 1
\end{array}\right)_{n \times n}
$$

Generalized Vandermonde Matrix

Principal Vandermonde Matrix

$$
\begin{gathered}
V_{n}=\left(\begin{array}{cccc}
x_{1}^{n-1} & x_{2}^{n-1} & \ldots & x_{n}^{n-1} \\
x_{1}^{n-2} & x_{2}^{n-2} & \ldots & x_{n}^{n-2} \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & 1
\end{array}\right)_{n \times n} \\
\operatorname{det}\left(V_{n}\right)=\prod_{i<j}\left(x_{i}-x_{j}\right)
\end{gathered}
$$

Generalized Vandermonde Matrix

Generalized Vandermonde Matrix

$$
\mathrm{GV}_{n}^{t}=\left(\begin{array}{cccc}
x_{1}^{t_{1}} & x_{2}^{t_{1}} & \ldots & x_{n}^{t_{1}} \\
x_{1}^{t_{2}} & x_{2}^{t_{2}} & \ldots & x_{n}^{t_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
& & & \\
x_{1}^{t_{n}} & x_{2}^{t_{n}} & \ldots & x_{n}^{t_{n}}
\end{array}\right)_{n \times n}
$$

where $t_{1}>t_{2}>\ldots>t_{n} \geq 0$

Generalized Vandermonde Matrix

Generalized Vandermonde Matrix

$$
\mathrm{GV}_{n}^{t}=\left(\begin{array}{cccc}
x_{1}^{t_{1}} & x_{2}^{t_{1}} & \ldots & x_{n}^{t_{1}} \\
x_{1}^{t_{2}} & x_{2}^{t_{2}} & \ldots & x_{n}^{t_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
& & & \\
x_{1}^{t_{n}} & x_{2}^{t_{n}} & \ldots & x_{n}^{t_{n}}
\end{array}\right)_{n \times n}
$$

where $t_{1}>t_{2}>\ldots>t_{n} \geq 0$

$$
\operatorname{det}\left(\mathrm{GV}_{n}^{t}\right)=\text { No known closed form expression }
$$

Generalized Vandermonde Matrix

Generalized Vandermonde Matrix

$$
\mathrm{GV}_{n}^{t}=\left(\begin{array}{cccc}
x_{1}^{t_{1}} & x_{2}^{t_{1}} & \ldots & x_{n}^{t_{1}} \\
x_{1}^{t_{2}} & x_{2}^{t_{2}} & \ldots & x_{n}^{t_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
& & & \\
x_{1}^{t_{n}} & x_{2}^{t_{n}} & \ldots & x_{n}^{t_{n}}
\end{array}\right)_{n \times n}
$$

where $t_{1}>t_{2}>\ldots>t_{n} \geq 0$
[This work] There are G.V. matrices whose Det. doesn't have a small small formula if the symbolic Det. does not.

Schur Polynomial

Schur Polynomial of degree d over its partition λ is defined as

$$
S_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\operatorname{det}\left(\mathrm{GV}_{n}^{\lambda+\delta}\right)}{\operatorname{det}\left(V_{n}\right)}
$$

Schur Polynomial

Schur Polynomial of degree d over its partition λ is defined as

$$
S_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\operatorname{det}\left(\mathrm{GV}_{n}^{\lambda+\delta}\right)}{\operatorname{det}\left(V_{n}\right)}
$$

where

$$
\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right) \quad \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\ell \leq n}>0
$$

Schur Polynomial

Schur Polynomial of degree d over its partition λ is defined as

$$
S_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\operatorname{det}\left(\mathrm{GV}_{n}^{\lambda+\delta}\right)}{\operatorname{det}\left(V_{n}\right)}
$$

where

$$
\begin{aligned}
& \boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right) \quad \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\ell \leq n}>0 \\
& \boldsymbol{\delta}=(n-1, n-2, \ldots \ldots, 0)
\end{aligned}
$$

Schur Polynomial

Schur Polynomial of degree d over its partition λ is defined as

$$
S_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\operatorname{det}\left(\mathrm{GV}_{n}^{\lambda+\delta}\right)}{\operatorname{det}\left(V_{n}\right)}
$$

where

$$
\begin{aligned}
& \quad \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right) \quad \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\ell \leq n}>0 \\
& \delta=(n-1, n-2, \ldots \ldots, 0) \\
& \lambda+\delta=\left(\lambda_{1}+n-1, \lambda_{2}+n-2, \ldots, \lambda_{\ell}+n-\ell, \ldots, 0\right)
\end{aligned}
$$

Schur polynomial

$$
\begin{gathered}
S_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\operatorname{det}\left(\mathrm{GV}_{n}^{\lambda+\delta}\right)}{\operatorname{det}\left(V_{n}\right)} \\
\boldsymbol{\lambda}+\boldsymbol{\delta}=\left(\lambda_{1}+n-1, \lambda_{2}+n-2, \ldots, \lambda_{\ell}+n-\ell, \ldots, 0\right)
\end{gathered}
$$

Schur polynomial

$$
\begin{gathered}
S_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\operatorname{det}\left(\mathrm{GV}_{n}^{\lambda+\delta}\right)}{\operatorname{det}\left(V_{n}\right)} \\
\boldsymbol{\lambda + \delta}=\left(\lambda_{1}+n-1, \lambda_{2}+n-2, \ldots, \lambda_{\ell}+n-\ell, \ldots, 0\right) \\
\operatorname{GV}_{n}^{\lambda+\boldsymbol{\delta}}=\left(\begin{array}{cccc}
x_{1}^{t_{1}} & x_{2}^{t_{1}} & \ldots & x_{n}^{t_{1}} \\
x_{1}^{t_{2}} & x_{2}^{t_{2}} & \ldots & x_{n}^{t_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}^{t_{n}} & x_{2}^{t_{n}} & \ldots & x_{n}^{t_{n}}
\end{array}\right)_{n \times n}
\end{gathered}
$$

Schur polynomial

$$
\begin{gathered}
S_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\operatorname{det}\left(\mathrm{GV}_{n}^{\lambda+\delta}\right)}{\operatorname{det}\left(V_{n}\right)} \\
\boldsymbol{\lambda}+\boldsymbol{\delta}=\left(\lambda_{1}+n-1, \lambda_{2}+n-2, \ldots, \lambda_{\ell}+n-\ell, \ldots, 0\right) \\
\mathrm{GV}_{n}^{\lambda+\boldsymbol{\delta}}=\left(\begin{array}{cccc}
x_{1}^{t_{1}} & x_{2}^{t_{1}} & \ldots & x_{n}^{t_{1}} \\
x_{1}^{t_{2}} & x_{2}^{t_{2}} & \ldots & x_{n}^{t_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}^{t_{n}} & x_{2}^{t_{n}} & \ldots & x_{n}^{t_{n}}
\end{array}\right)_{n \times n} \\
\text { where } t_{1}>t_{2}>\ldots>t_{n} \geq 0
\end{gathered}
$$

Schur polynomial

$$
\begin{gathered}
S_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\operatorname{det}\left(\mathrm{GV}_{n}^{\lambda+\delta}\right)}{\operatorname{det}\left(V_{n}\right)} \\
\boldsymbol{\lambda}+\boldsymbol{\delta}=\left(\lambda_{1}+n-1, \lambda_{2}+n-2, \ldots, \lambda_{\ell}+n-\ell, \ldots, 0\right) \\
\mathrm{GV}_{n}^{\boldsymbol{\lambda}+\boldsymbol{\delta}}=\left(\begin{array}{cccc}
x_{1}^{t_{1}} & x_{2}^{t_{1}} & \ldots & x_{n}^{t_{1}} \\
x_{1}^{t_{2}} & x_{2}^{t_{2}} & \ldots & x_{n}^{t_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}^{t_{n}} & x_{2}^{t_{n}} & \ldots & x_{n}^{t_{n}}
\end{array}\right)_{n \times n} \\
t_{i} \leftarrow \lambda_{i}+n-i
\end{gathered}
$$

Formula complexity of S_{λ}

$$
S_{\lambda}(\mathbf{x})=\frac{\operatorname{det}\left(\mathrm{GV}_{n}^{\lambda+\delta}\right)}{\operatorname{det}\left(V_{n}\right)}
$$

Q. What is the formula complexity of Schur polynomials?

Formula complexity of S_{λ}

$$
S_{\lambda}(\mathbf{x})=\frac{\operatorname{det}\left(\mathrm{GV}_{n}^{\lambda+\delta}\right)}{\operatorname{det}\left(V_{n}\right)}
$$

Q. What is the formula complexity of Schur polynomials?
[This work] There exists $\boldsymbol{\lambda}$ for which S_{λ} is hard for formulas

Formula complexity of S_{λ}

$$
S_{\lambda}(\mathbf{x})=\frac{\operatorname{det}\left(\mathrm{GV}_{n}^{\lambda+\delta}\right)}{\operatorname{det}\left(V_{n}\right)}
$$

Q. What is the formula complexity of Schur polynomials?
[This work] There exists $\boldsymbol{\lambda}$ for which S_{λ} is hard for formulas unless the Determinant has a small formula.

Formula complexity of S_{λ}

$$
S_{\lambda}(\mathbf{x})=\frac{\operatorname{det}\left(\mathrm{GV}_{n}^{\lambda+\delta}\right)}{\operatorname{det}\left(V_{n}\right)}
$$

Q. What is the formula complexity of Schur polynomials?
[This work] There exists $\boldsymbol{\lambda}$ for which S_{λ} is hard for formulas unless the Determinant has a small formula.

$$
\Downarrow
$$

Formula complexity of S_{λ}

$$
S_{\lambda}(\mathbf{x})=\frac{\operatorname{det}\left(\mathrm{GV}_{n}^{\lambda+\delta}\right)}{\operatorname{det}\left(V_{n}\right)}
$$

Q. What is the formula complexity of Schur polynomials?
[This work] There exists $\boldsymbol{\lambda}$ for which S_{λ} is hard for formulas unless the Determinant has a small formula.

$$
\downarrow
$$

There are G.V.Ds which do not have small formulas if the symbolic Determinant does not.

Proof idea

Input:

1. $g\left(q_{1}, q_{2} \ldots, q_{k}\right)$ where $q_{i} \in \mathbb{C}\left[x_{1}, x_{2} \ldots x_{n}\right]$ and q_{i} 's are algebraically independent.
2. g is a homogeneous poly of degree d where $\left\{q_{1}, q_{2} \ldots q_{k}\right\}$ satisfies some special property.

Proof idea

Input:

1. $g\left(q_{1}, q_{2} \ldots, q_{k}\right)$ where $q_{i} \in \mathbb{C}\left[x_{1}, x_{2} \ldots x_{n}\right]$ and q_{i} 's are algebraically independent.
2. g is a homogeneous poly of degree d where $\left\{q_{1}, q_{2} \ldots q_{k}\right\}$ satisfies some special property.
Output: Find $g\left(z_{1}, z_{2} \ldots z_{k}\right)$ efficiently.

Proof idea

Input:

1. $g\left(q_{1}, q_{2} \ldots, q_{k}\right)$ where $q_{i} \in \mathbb{C}\left[x_{1}, x_{2} \ldots x_{n}\right]$ and q_{i} 's are algebraically independent.
2. g is a homogeneous poly of degree d where $\left\{q_{1}, q_{2} \ldots q_{k}\right\}$ satisfies some special property.
Output: Find $g\left(z_{1}, z_{2} \ldots z_{k}\right)$ efficiently.

Proof idea

Input:

1. $g\left(q_{1}, q_{2} \ldots, q_{k}\right)$ where $q_{i} \in \mathbb{C}\left[x_{1}, x_{2} \ldots x_{n}\right]$ and q_{i} 's are algebraically independent.
2. g is a homogeneous poly of degree d where $\left\{q_{1}, q_{2} \ldots q_{k}\right\}$ satisfies some special property.
Output: Find $g\left(z_{1}, z_{2} \ldots z_{k}\right)$ efficiently.
Our technique: \quad For some $\mathbf{a} \in \mathbb{C}^{n}$

Taylor expansion

$$
g\left(q_{1}(\mathbf{a}+\mathbf{x}), q_{2}(\mathbf{a}+\mathbf{x}), \ldots, q_{k}(\mathbf{a}+\mathbf{x})\right)
$$

Proof idea

Input:

1. $g\left(q_{1}, q_{2} \ldots, q_{k}\right)$ where $q_{i} \in \mathbb{C}\left[x_{1}, x_{2} \ldots x_{n}\right]$ and q_{i} 's are algebraically independent.
2. g is a homogeneous poly of degree d where $\left\{q_{1}, q_{2} \ldots q_{k}\right\}$ satisfies some special property.
Output: Find $g\left(z_{1}, z_{2} \ldots z_{k}\right)$ efficiently.
Our technique: \quad For some $\mathbf{a} \in \mathbb{C}^{n}$

Taylor expansion

$$
g\left(q_{1}(\mathbf{a}+\mathbf{x}), q_{2}(\mathbf{a}+\mathbf{x}), \ldots, q_{k}(\mathbf{a}+\mathbf{x})\right)
$$

$q_{i}(\mathbf{a}+\mathbf{x})=q_{i}(\mathbf{a})+\sum_{j=1}^{n} x_{j} \cdot \frac{\partial q_{i}}{\partial x_{j}}(\mathbf{a})+$ higher degree components

Proof idea

Input:

1. $g\left(q_{1}, q_{2} \ldots, q_{k}\right)$ where $q_{i} \in \mathbb{C}\left[x_{1}, x_{2} \ldots x_{n}\right]$ and q_{i} 's are algebraically independent.
2. g is a homogeneous poly of degree d where $\left\{q_{1}, q_{2} \ldots q_{k}\right\}$ satisfies some special property.
Output: Find $g\left(z_{1}, z_{2} \ldots z_{k}\right)$ efficiently.
Our technique: \quad For some $\mathbf{a} \in \mathbb{C}^{n}$

Taylor expansion

$$
g\left(q_{1}(\mathbf{a}+\mathbf{x}), q_{2}(\mathbf{a}+\mathbf{x}), \ldots, q_{k}(\mathbf{a}+\mathbf{x})\right)
$$

$q_{i}(\mathbf{a}+\mathbf{x})=\sum_{j=1}^{n} x_{j} \cdot \frac{\partial q_{i}}{\partial x_{j}}(\mathbf{a})+$ higher degree components (for $\left.q_{i}(\mathbf{a})=0\right)$

Proof idea

Input:

1. $g\left(q_{1}, q_{2} \ldots, q_{k}\right)$ where $q_{i} \in \mathbb{C}\left[x_{1}, x_{2} \ldots x_{n}\right]$ and q_{i} 's are algebraically independent.
2. g is a homogeneous poly of degree d where $\left\{q_{1}, q_{2} \ldots q_{k}\right\}$ satisfies some special property.
Output: Find $g\left(z_{1}, z_{2} \ldots z_{k}\right)$ efficiently.
Our technique: \quad For some $\mathbf{a} \in \mathbb{C}^{n}$

Taylor expansion

$$
g\left(q_{1}(\mathbf{a}+\mathbf{x}), q_{2}(\mathbf{a}+\mathbf{x}), \ldots, q_{k}(\mathbf{a}+\mathbf{x})\right)
$$

$q_{i}(\mathbf{a}+\mathbf{x})=$ linear component $\left(\mathcal{L}_{i}\right)+$ higher degree components $\left(\mathcal{H}_{i}\right)$

Proof idea

Input:

1. $g\left(q_{1}, q_{2} \ldots, q_{k}\right)$ where $q_{i} \in \mathbb{C}\left[x_{1}, x_{2} \ldots x_{n}\right]$ and q_{i} 's are algebraically independent.
2. g is a homogeneous poly of degree d where $\left\{q_{1}, q_{2} \ldots q_{k}\right\}$ satisfies some special property.
Output: Find $g\left(z_{1}, z_{2} \ldots z_{k}\right)$ efficiently.
Our technique: \quad For some $\mathbf{a} \in \mathbb{C}^{n}$
Taylor expansion

$$
g\left(\mathcal{L}_{1}(\mathbf{x})+\mathcal{H}_{1}(\mathbf{x}), \mathcal{L}_{2}(\mathbf{x})+\mathcal{H}_{2}(\mathbf{x}), \ldots \mathcal{L}_{k}(\mathbf{x})+\mathcal{H}_{k}(\mathbf{x})\right)
$$

$q_{i}(\mathbf{a}+\mathbf{x})=$ linear component $\left(\mathcal{L}_{i}\right)+$ higher degree components $\left(\mathcal{H}_{i}\right)$

Proof idea

Input:

1. $g\left(q_{1}, q_{2} \ldots, q_{k}\right)$ where $q_{i} \in \mathbb{C}\left[x_{1}, x_{2} \ldots x_{n}\right]$ and q_{i} 's are algebraically independent.
2. g is a homogeneous poly of degree d where $\left\{q_{1}, q_{2} \ldots q_{k}\right\}$ satisfies some special property.
Output: Find $g\left(z_{1}, z_{2} \ldots z_{k}\right)$ efficiently.
Our technique:
For some $\mathbf{a} \in \mathbb{C}^{n}$

$$
\begin{gathered}
\downarrow \text { Taylor expansion } \\
g\left(\mathcal{L}_{1}(\mathbf{x})+\mathcal{H}_{1}(\mathrm{x}), \mathcal{L}_{2}(\mathrm{x})+\mathcal{H}_{2}(\mathrm{x}), \ldots \mathcal{L}_{k}(\mathrm{x})+\mathcal{H}_{k}(\mathrm{x})\right)
\end{gathered}
$$

Proof idea

Input:

1. $g\left(q_{1}, q_{2} \ldots, q_{k}\right)$ where $q_{i} \in \mathbb{C}\left[x_{1}, x_{2} \ldots x_{n}\right]$ and q_{i} 's are algebraically independent.
2. g is a homogeneous poly of degree d where $\left\{q_{1}, q_{2} \ldots q_{k}\right\}$ satisfies some special property.
Output: Find $g\left(z_{1}, z_{2} \ldots z_{k}\right)$ efficiently.
Our technique:
For some $\mathbf{a} \in \mathbb{C}^{n}$

$$
\begin{gathered}
\left\lvert\, \begin{array}{l}
\text { Taylor expansion } \\
g\left(\mathcal{L}_{1}(\mathbf{x})+\mathcal{H}_{1}(\mathbf{x}), \mathcal{L}_{2}(\mathbf{x})+\mathcal{H}_{2}(\mathbf{x}), \ldots \mathcal{L}_{k}(\mathbf{x})+\mathcal{H}_{k}(\mathbf{x})\right) \\
\downarrow \text { degree } d \text { component }
\end{array}\right.
\end{gathered}
$$

Proof idea

Input:

1. $g\left(q_{1}, q_{2} \ldots, q_{k}\right)$ where $q_{i} \in \mathbb{C}\left[x_{1}, x_{2} \ldots x_{n}\right]$ and q_{i} 's are algebraically independent.
2. g is a homogeneous poly of degree d where $\left\{q_{1}, q_{2} \ldots q_{k}\right\}$ satisfies some special property.
Output: Find $g\left(z_{1}, z_{2} \ldots z_{k}\right)$ efficiently.
Our technique:
For some $\mathbf{a} \in \mathbb{C}^{n}$

$$
\begin{gathered}
\left\lvert\, \begin{array}{l}
\text { Taylor expansion } \\
g\left(\mathcal{L}_{1}(\mathbf{x})+\mathcal{H}_{1}(\mathbf{x}), \mathcal{L}_{2}(\mathbf{x})+\mathcal{H}_{2}(\mathbf{x}), \ldots \mathcal{L}_{k}(\mathbf{x})+\mathcal{H}_{k}(\mathbf{x})\right) \\
\\
\downarrow \text { degree } d \text { component } \\
g\left(\mathcal{L}_{1}(\mathbf{x}), \mathcal{L}_{2}(\mathbf{x}), \ldots \mathcal{L}_{k}(\mathbf{x})\right)
\end{array}\right.
\end{gathered}
$$

Proof idea

Input:

1. $g\left(q_{1}, q_{2} \ldots, q_{k}\right)$ where $q_{i} \in \mathbb{C}\left[x_{1}, x_{2} \ldots x_{n}\right]$ and q_{i} 's are algebraically independent.
2. g is a homogeneous poly of degree d where $\left\{q_{1}, q_{2} \ldots q_{k}\right\}$ satisfies some special property.
Output: Find $g\left(z_{1}, z_{2} \ldots z_{k}\right)$ efficiently.
Our technique:
For some $\mathbf{a} \in \mathbb{C}^{n}$

$$
\begin{aligned}
& \text { Taylor expansion } \\
& g\left(\mathcal{L}_{1}(\mathbf{x})+\mathcal{H}_{1}(\mathbf{x}), \mathcal{L}_{2}(\mathbf{x})+\mathcal{H}_{2}(\mathbf{x}), \ldots \mathcal{L}_{k}(\mathbf{x})+\mathcal{H}_{k}(\mathbf{x})\right) \\
& \begin{array}{l}
\text { degree } d \text { component } \\
g\left(\mathcal{L}_{1}(\mathbf{x}), \mathcal{L}_{2}(\mathbf{x}), \ldots \mathcal{L}_{k}(\mathbf{x})\right) \\
\\
\\
\text { linear transformation }
\end{array}
\end{aligned}
$$

Proof idea

Input:

1. $g\left(q_{1}, q_{2} \ldots, q_{k}\right)$ where $q_{i} \in \mathbb{C}\left[x_{1}, x_{2} \ldots x_{n}\right]$ and q_{i} 's are algebraically independent.
2. g is a homogeneous poly of degree d where $\left\{q_{1}, q_{2} \ldots q_{k}\right\}$ satisfies some special property.
Output: Find $g\left(z_{1}, z_{2} \ldots z_{k}\right)$ efficiently.
Our technique:
For some $\mathbf{a} \in \mathbb{C}^{n}$

$$
\begin{gathered}
\mid \text { Taylor expansion } \\
g\left(\mathcal{L}_{1}(\mathbf{x})+\mathcal{H}_{1}(\mathbf{x}), \mathcal{L}_{2}(\mathrm{x})+\mathcal{H}_{2}(\mathrm{x}), \ldots \mathcal{L}_{k}(\mathrm{x})+\mathcal{H}_{k}(\mathrm{x})\right) \\
\downarrow \text { degree } d \text { component } \\
g\left(\mathcal{L}_{1}(\mathbf{x}), \mathcal{L}_{2}(\mathbf{x}), \ldots \mathcal{L}_{k}(\mathbf{x})\right) \\
\downarrow \begin{array}{l}
\text { linear transformation }
\end{array} \\
g\left(z_{1}, z_{2} \ldots z_{k}\right)
\end{gathered}
$$

Key lemma

1. g is a homogeneous poly of degree d.
2. $g\left(q_{1}, q_{2} \ldots, q_{k}\right)$ has a small formula, where $q_{i} \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and q_{i} 's are algebraically independent.

There exists a point 'a' s.t.
i $q_{i}(\mathrm{a})=0$ for all i.
ii The rank of the Jacobian matrix of $q_{1}, q_{2}, \ldots, q_{k}$ when evaluated at 'a' is equal to its symbolic rank.

$$
\Downarrow
$$

$g\left(z_{1}, z_{2} \ldots z_{k}\right)$ has a small formula.

Summary of results

Theorem

$\exists \boldsymbol{b} \in \mathbb{C}^{n}$ s.t. for any homogeneous polynomial $f \in \mathbb{C}[\mathbf{x}]$ of deg d, if $f_{\text {sym }}=f\left(e_{1}-b_{1}, \ldots, e_{n}-b_{n}\right)$ then,

$$
\begin{gathered}
L(f) \leq \mathcal{O}\left(L\left(f_{\text {sym }}\right)^{2} n\right) \\
L(f) \xlongequal{\text { def }} \text { formula size of } f
\end{gathered}
$$

Theorem

There exists a $\boldsymbol{\lambda}$ s.t. S_{λ} does not have a small formula unless the Determinant has.

Theorem

There are Generalized Vandermonde determinants which do not have small formulas if the determinant does not.

Open questions

1. Can we eliminate the homogeneity constraint on g ?

Open questions

1. Can we eliminate the homogeneity constraint on g ?
2. Can we eliminate the special properties?

Open questions

1. Can we eliminate the homogeneity constraint on g ?
2. Can we eliminate the special properties?
3. Can we prove a Bläser \& Jindal kind of statement for formulas and ABPs in general?

Thank you!

