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The homogeneous(Complete) symmetric polynomial(hd) is the sum
of all monomials of degree exactly d .
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i1≤i2≤...≤id

xi1xi2 . . . xid

h2(x1, x2) = x2
1 + x2

2 + x1x2



Introduction

[Lipton-Regan '09] complexity of symmetric polynomials

www�?
complexity of polynomials in general



Introduction

Fundamental theorem of symmetric polynomials

For any fsym ∈ C[x1, x2 . . . xn], there exists a unique f ∈ C[z1, z2, . . . , zn]
such that fsym = f (e1, e2 . . . , en)

ed
def
== elementary symmetric poly of deg d

Assumption Complex field

How the complexity of f and fsym are related?
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[Bläser-Jindal '18] answers this affirmatively

only for circuits

.
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Introduction

C (fsym) ≤ C (f ) + nO(1)

and

(If true!) C (f ) ≤ C (fsym) + nO(1)

ww�
C (f ) = C (fsym) + nO(1)

[Bläser-Jindal '18] C (f ) ≤ O(d2C (fsym) + d2n2) (d
def
== deg(f ))

Can we prove a similar statement for the ABPs(Formulas)?



Our result for Formulas

[Bläser-Jindal '18] For any polynomial f ∈ C[xxx] of deg d where
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def
== formula size of ‘f ’
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Key lemma

1. g is a homogeneous poly of degree d .

2. g(q1, q2 . . . , qk) has a small formula, where
qi ∈ C[x1, x2, . . . , xn] and qi ’s are algebraically independent.

There exists a point ‘a’ s.t.

i qi (a) = 0 for all i .

ii The rank of the Jacobian matrix of q1, q2, . . . , qk when
evaluated at ‘a’ is equal to its symbolic rank.

ww�
g(z1, z2 . . . zk) has a small formula.



Summary of results

Theorem

∃bbb ∈ Cn s.t. for any homogeneous polynomial f ∈ C[xxx] of deg d ,
if fsym = f (e1 − b1, . . . , en − bn) then,

L(f ) ≤ O(L(fsym)2n)

L(f )
def
== formula size of f

Theorem
There exists a λλλ s.t. Sλλλ does not have a small formula unless the
Determinant has.

Theorem
There are Generalized Vandermonde determinants which do not
have small formulas if the determinant does not.
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and ABPs in general?
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Thank you!


