# Schur Polynomials do not have small formulas if the Determinant doesn't

Chandra Kanta Mohapatra

IIT Bombay

Joint work with

Prasad Chaugule, Mrinal Kumar, Nutan Limaye, Adrian She & Srikanth Srinivasan

WACT 2023

University of Warwick

# Talk Outline

- (a) Preliminaries
- (b) Introduction and prior work
- (c) Main results
- (d) Proof sketch
- (e) Open questions

## Prelims: Circuits, Formulas and ABPs

#### Algebraic circuit



## Prelims: Circuits, Formulas and ABPs

#### Algebraic Formula



#### Prelims: Circuits, Formulas and ABPs

#### Algebraic Branching Program



#### Introduction: Symmetric Polynomials

 $f_{\text{sym}}(\mathbf{x}) = f_{\text{sym}}(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)})$  under any permutation  $\sigma \in S_n$ .

#### Introduction: Symmetric Polynomials

 $f_{\text{sym}}(\mathbf{x}) = f_{\text{sym}}(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)})$  under any permutation  $\sigma \in S_n$ .  $f(x_1, x_2) = x_1 + x_2$  is symmetric but  $f(x_1, x_2) = x_1^2 + x_2$  is not.

$$e_d = \sum_{i_1 < i_2 < \ldots < i_d} x_{i_1} x_{i_2} \ldots x_{i_d}$$

$$e_d = \sum_{i_1 < i_2 < \ldots < i_d} x_{i_1} x_{i_2} \ldots x_{i_d}$$

 $e_2(x_1, x_2) = x_1 x_2$ 

$$e_d = \sum_{i_1 < i_2 < \ldots < i_d} x_{i_1} x_{i_2} \ldots x_{i_d}$$

 $e_2(x_1,x_2)=x_1x_2$ 

The homogeneous (Complete) symmetric polynomial  $(h_d)$  is the sum of all monomials of degree exactly d.

$$h_d = \sum_{i_1 \leq i_2 \leq \dots \leq i_d} x_{i_1} x_{i_2} \dots x_{i_d}$$

$$e_d = \sum_{i_1 < i_2 < \ldots < i_d} x_{i_1} x_{i_2} \ldots x_{i_d}$$

 $e_2(x_1,x_2)=x_1x_2$ 

The homogeneous (Complete) symmetric polynomial  $(h_d)$  is the sum of all monomials of degree exactly d.

$$h_d = \sum_{i_1 \leq i_2 \leq \ldots \leq i_d} x_{i_1} x_{i_2} \ldots x_{i_d}$$

 $h_2(x_1, x_2) = x_1^2 + x_2^2 + x_1 x_2$ 

[Lipton-Regan '09] complexity of symmetric polynomials

complexity of polynomials in general

#### Fundamental theorem of symmetric polynomials

For any  $f_{sym} \in \mathbb{C}[x_1, x_2 \dots x_n]$ , there exists a unique  $f \in \mathbb{C}[z_1, z_2, \dots, z_n]$ such that  $f_{sym} = f(e_1, e_2 \dots, e_n)$ 

 $e_d \stackrel{\text{def}}{=\!\!=\!\!=}$  elementary symmetric poly of deg d

Assumption Complex field

How the complexity of f and  $f_{sym}$  are related?

$$C(f) \stackrel{\text{def}}{=\!\!=} \text{Circuit size of } 'f'$$
  
 $n \stackrel{\text{def}}{=\!\!=} \text{Number of variables}$ 

$$C(f) \stackrel{\text{def}}{=} \text{Circuit size of } f'$$
  
 $n \stackrel{\text{def}}{=} \text{Number of variables}$ 

$$C(f_{\mathsf{sym}}) \leq C(f) + n^{\mathcal{O}(1)}$$

$$C(f) \stackrel{\text{def}}{=} \text{Circuit size of } f'$$
  
 $n \stackrel{\text{def}}{=} \text{Number of variables}$ 

$$C(f_{\mathsf{sym}}) \leq C(f) + n^{\mathcal{O}(1)}$$

or

$$C(f) \stackrel{\text{def}}{=} \text{Circuit size of } f'$$
  
 $n \stackrel{\text{def}}{=} \text{Number of variables}$ 

$$C(f_{\mathsf{sym}}) \leq C(f) + n^{\mathcal{O}(1)}$$

or

$$C(f) \leq C(f_{\mathsf{sym}}) + n^{\mathcal{O}(1)}$$

 $\checkmark \quad C(f_{\rm sym}) \leq C(f) + n^{\mathcal{O}(1)}$ 





 $C(f_{\mathsf{sym}}) \leq C(f) + n^{\mathcal{O}(1)}$  $\checkmark$ and (If true!)  $C(f) \leq C(f_{sym}) + n^{\mathcal{O}(1)}$ 

$$\checkmark \qquad C(f_{\mathsf{sym}}) \leq C(f) + n^{\mathcal{O}(1)}$$
and
$$(\mathsf{If true!}) \quad C(f) \leq C(f_{\mathsf{sym}}) + n^{\mathcal{O}(1)}$$

$$\Downarrow$$





[Bläser-Jindal '18] answers this affirmatively.



$$C(f) = C(f_{\rm sym}) + n^{\mathcal{O}(1)}$$

[Bläser-Jindal '18] answers this affirmatively. only for circuits



[Bläser-Jindal '18]  $C(f) \leq \mathcal{O}(d^2 C(f_{sym}) + d^2 n^2)$   $(d \stackrel{\text{def}}{=} \deg(f))$ 



[Bläser-Jindal '18]  $C(f) \leq \mathcal{O}(d^2 C(f_{sym}) + d^2 n^2)$   $(d \stackrel{\text{def}}{=} \deg(f))$ 

Can we prove a similar statement for the ABPs(Formulas)?

[Bläser-Jindal '18] For any polynomial  $f \in \mathbb{C}[\mathbf{x}]$  of deg d where  $f_{sym} = f(e_1, \ldots, e_n)$ ,

$$C(f) \leq \mathcal{O}(d^2 C(f_{sym}) + d^2 n^2)$$

[Bläser-Jindal '18] For any polynomial  $f \in \mathbb{C}[\mathbf{x}]$  of deg d where  $f_{sym} = f(e_1, \ldots, e_n)$ ,

$$C(f) \leq \mathcal{O}(d^2 C(f_{sym}) + d^2 n^2)$$

[This work] There exists  $\mathbf{b} \in \mathbb{C}^n$ , s.t. for any homogeneous polynomial  $f \in \mathbb{C}[\mathbf{x}]$  of deg d, if  $f_{sym} = f(e_1 - b_1, \dots, e_n - b_n)$  then,

$$L(f) \leq \mathcal{O}(L(f_{sym})^2 n)$$
$$L(f) \stackrel{\text{def}}{=} \text{formula size of } f$$

Principal Vandermonde Matrix

$$V_n = \begin{pmatrix} x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \\ x_1^{n-2} & x_2^{n-2} & \dots & x_n^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{pmatrix}_{n \times n}$$

Principal Vandermonde Matrix

$$V_{n} = \begin{pmatrix} x_{1}^{n-1} & x_{2}^{n-1} & \dots & x_{n}^{n-1} \\ x_{1}^{n-2} & x_{2}^{n-2} & \dots & x_{n}^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ & & & & \\ 1 & 1 & \dots & 1 \end{pmatrix}_{n \times n}$$

 $\det(V_n) = \prod_{i < j} (x_i - x_j)$ 

#### Generalized Vandermonde Matrix

$$\mathsf{GV}_{n}^{t} = \begin{pmatrix} x_{1}^{t_{1}} & x_{2}^{t_{1}} & \dots & x_{n}^{t_{1}} \\ x_{1}^{t_{2}} & x_{2}^{t_{2}} & \dots & x_{n}^{t_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1}^{t_{n}} & x_{2}^{t_{n}} & \dots & x_{n}^{t_{n}} \end{pmatrix}_{n \times n}$$

where  $t_1 > t_2 > ... > t_n \ge 0$ 

#### Generalized Vandermonde Matrix

$$\mathsf{GV}_{n}^{\mathbf{t}} = \begin{pmatrix} x_{1}^{t_{1}} & x_{2}^{t_{1}} & \dots & x_{n}^{t_{1}} \\ x_{1}^{t_{2}} & x_{2}^{t_{2}} & \dots & x_{n}^{t_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ & & & & \\ x_{1}^{t_{n}} & x_{2}^{t_{n}} & \dots & x_{n}^{t_{n}} \end{pmatrix}_{n \times n}$$

where  $t_1 > t_2 > ... > t_n \ge 0$ 

 $det(GV_n^t) = No known closed form expression$ 

#### Generalized Vandermonde Matrix

$$\mathsf{GV}_{n}^{t} = \begin{pmatrix} x_{1}^{t_{1}} & x_{2}^{t_{1}} & \dots & x_{n}^{t_{1}} \\ x_{1}^{t_{2}} & x_{2}^{t_{2}} & \dots & x_{n}^{t_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ & & & & \\ x_{1}^{t_{n}} & x_{2}^{t_{n}} & \dots & x_{n}^{t_{n}} \end{pmatrix}_{n \times n}$$

where  $t_1 > t_2 > ... > t_n \ge 0$ 

[This work] There are G.V. matrices whose Det. doesn't have a small small formula if the symbolic Det. does not.

$$S_{\lambda}(x_1, x_2, \dots, x_n) = \frac{\det(\mathsf{GV}_n^{\lambda+\delta})}{\det(V_n)}$$

$$S_{\lambda}(x_1, x_2, \dots, x_n) = \frac{\det(\mathsf{GV}_n^{\lambda+\delta})}{\det(V_n)}$$

where

$$\boldsymbol{\lambda} = (\lambda_1, \lambda_2, \dots, \lambda_{\ell}) \quad \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_{\ell \le n} > 0$$

$$S_{\lambda}(x_1, x_2, \dots, x_n) = \frac{\det(\mathsf{GV}_n^{\lambda+\delta})}{\det(V_n)}$$

where

$$\boldsymbol{\lambda} = (\lambda_1, \lambda_2, \dots, \lambda_{\ell}) \quad \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_{\ell \le n} > 0$$

$$\boldsymbol{\delta} = (n-1, n-2, \ldots, 0)$$

$$S_{\lambda}(x_1, x_2, \dots, x_n) = \frac{\det(\mathsf{GV}_n^{\lambda+\delta})}{\det(V_n)}$$

where

$$\boldsymbol{\lambda} = (\lambda_1, \lambda_2, \dots, \lambda_{\ell}) \quad \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_{\ell \le n} > 0$$

$$\boldsymbol{\delta}=(n-1,n-2,\ldots,0)$$

$$\boldsymbol{\lambda} + \boldsymbol{\delta} = (\lambda_1 + n - 1, \lambda_2 + n - 2, \dots, \lambda_{\ell} + n - \ell, \dots, 0)$$

$$S_{\lambda}(x_1, x_2, \dots, x_n) = \frac{\det(\mathsf{GV}_n^{\lambda+\delta})}{\det(V_n)}$$

$$\boldsymbol{\lambda} + \boldsymbol{\delta} = (\lambda_1 + n - 1, \lambda_2 + n - 2, \dots, \lambda_\ell + n - \ell, \dots, 0)$$

$$S_{\lambda}(x_1, x_2, \dots, x_n) = \frac{\det(\mathsf{GV}_n^{\lambda+\delta})}{\det(V_n)}$$

$$\boldsymbol{\lambda} + \boldsymbol{\delta} = (\lambda_1 + n - 1, \lambda_2 + n - 2, \dots, \lambda_\ell + n - \ell, \dots, 0)$$

$$\mathsf{GV}_{n}^{\boldsymbol{\lambda}+\boldsymbol{\delta}} = \begin{pmatrix} x_{1}^{t_{1}} & x_{2}^{t_{1}} & \dots & x_{n}^{t_{1}} \\ x_{1}^{t_{2}} & x_{2}^{t_{2}} & \dots & x_{n}^{t_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ & & & & \\ x_{1}^{t_{n}} & x_{2}^{t_{n}} & \dots & x_{n}^{t_{n}} \end{pmatrix}_{n \times n}$$

$$S_{\lambda}(x_1, x_2, \dots, x_n) = \frac{\det(\mathsf{GV}_n^{\lambda+\delta})}{\det(V_n)}$$

$$\boldsymbol{\lambda} + \boldsymbol{\delta} = (\lambda_1 + n - 1, \lambda_2 + n - 2, \dots, \lambda_{\ell} + n - \ell, \dots, 0)$$

$$\mathsf{GV}_{n}^{\boldsymbol{\lambda}+\boldsymbol{\delta}} = \begin{pmatrix} x_{1}^{t_{1}} & x_{2}^{t_{1}} & \dots & x_{n}^{t_{1}} \\ x_{1}^{t_{2}} & x_{2}^{t_{2}} & \dots & x_{n}^{t_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ x_{1}^{t_{n}} & x_{2}^{t_{n}} & \dots & x_{n}^{t_{n}} \end{pmatrix}_{n \times n}$$

where  $t_1 > t_2 > ... > t_n \ge 0$ 

$$S_{\lambda}(x_1, x_2, \dots, x_n) = \frac{\det(\mathsf{GV}_n^{\lambda+\delta})}{\det(V_n)}$$

$$\boldsymbol{\lambda} + \boldsymbol{\delta} = (\lambda_1 + n - 1, \lambda_2 + n - 2, \dots, \lambda_{\ell} + n - \ell, \dots, 0)$$

$$\mathsf{GV}_{n}^{\boldsymbol{\lambda}+\boldsymbol{\delta}} = \begin{pmatrix} x_{1}^{t_{1}} & x_{2}^{t_{1}} & \dots & x_{n}^{t_{1}} \\ x_{1}^{t_{2}} & x_{2}^{t_{2}} & \dots & x_{n}^{t_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1}^{t_{n}} & x_{2}^{t_{n}} & \dots & x_{n}^{t_{n}} \end{pmatrix}_{n \times n}$$
$$t_{i} \leftarrow \lambda_{i} + n - i$$

$$S_{\boldsymbol{\lambda}}(\mathbf{x}) = rac{\det\left(\mathsf{GV}_n^{\boldsymbol{\lambda}+\boldsymbol{\delta}}
ight)}{\det(V_n)}$$

Q. What is the formula complexity of Schur polynomials?

$$S_{\boldsymbol{\lambda}}(\mathbf{x}) = rac{\det\left(\mathsf{GV}_n^{\boldsymbol{\lambda}+\boldsymbol{\delta}}
ight)}{\det(V_n)}$$

Q. What is the formula complexity of Schur polynomials?

[This work] There exists  $\lambda$  for which  $S_{\lambda}$  is hard for formulas

$$S_{\boldsymbol{\lambda}}(\mathbf{x}) = rac{\det\left(\mathsf{GV}_n^{\boldsymbol{\lambda}+\boldsymbol{\delta}}
ight)}{\det(V_n)}$$

Q. What is the formula complexity of Schur polynomials?

[This work] There exists  $\lambda$  for which  $S_{\lambda}$  is hard for formulas unless the Determinant has a small formula.

$$S_{\boldsymbol{\lambda}}(\mathbf{x}) = rac{\det\left(\mathsf{GV}_n^{\boldsymbol{\lambda}+\boldsymbol{\delta}}
ight)}{\det(V_n)}$$

Q. What is the formula complexity of Schur polynomials?

[This work] There exists  $\lambda$  for which  $S_{\lambda}$  is hard for formulas unless the Determinant has a small formula.

$$S_{\boldsymbol{\lambda}}(\mathbf{x}) = rac{\det\left(\mathsf{GV}_n^{\boldsymbol{\lambda}+\boldsymbol{\delta}}
ight)}{\det(V_n)}$$

Q. What is the formula complexity of Schur polynomials?

[This work] There exists  $\lambda$  for which  $S_{\lambda}$  is hard for formulas unless the Determinant has a small formula.

There are G.V.Ds which do not have small formulas if the symbolic Determinant does not.

Input:

- 1.  $g(q_1, q_2, ..., q_k)$  where  $q_i \in \mathbb{C}[x_1, x_2, ..., x_n]$  and  $q_i$ 's are algebraically independent.
- g is a homogeneous poly of degree d where {q<sub>1</sub>, q<sub>2</sub>...q<sub>k</sub>} satisfies some special property.

Input:

- 1.  $g(q_1, q_2, ..., q_k)$  where  $q_i \in \mathbb{C}[x_1, x_2, ..., x_n]$  and  $q_i$ 's are algebraically independent.
- g is a homogeneous poly of degree d where {q<sub>1</sub>, q<sub>2</sub>...q<sub>k</sub>} satisfies some special property.

**Output:** Find  $g(z_1, z_2 \dots z_k)$  efficiently.

Input:

- 1.  $g(q_1, q_2, ..., q_k)$  where  $q_i \in \mathbb{C}[x_1, x_2, ..., x_n]$  and  $q_i$ 's are algebraically independent.
- g is a homogeneous poly of degree d where {q<sub>1</sub>, q<sub>2</sub>...q<sub>k</sub>} satisfies some special property.

**Output:** Find  $g(z_1, z_2 \dots z_k)$  efficiently.

Input:

- 1.  $g(q_1, q_2, ..., q_k)$  where  $q_i \in \mathbb{C}[x_1, x_2, ..., x_n]$  and  $q_i$ 's are algebraically independent.
- g is a homogeneous poly of degree d where {q<sub>1</sub>, q<sub>2</sub>...q<sub>k</sub>} satisfies some special property.

**Output:** Find  $g(z_1, z_2 \dots z_k)$  efficiently.

Our technique:

For some  $\mathbf{a} \in \mathbb{C}^n$ 

 $\int \text{Taylor expansion} g(q_1(\mathbf{a} + \mathbf{x}), q_2(\mathbf{a} + \mathbf{x}), \dots, q_k(\mathbf{a} + \mathbf{x}))$ 

Input:

- 1.  $g(q_1, q_2, ..., q_k)$  where  $q_i \in \mathbb{C}[x_1, x_2, ..., x_n]$  and  $q_i$ 's are algebraically independent.
- g is a homogeneous poly of degree d where {q<sub>1</sub>, q<sub>2</sub>...q<sub>k</sub>} satisfies some special property.

**Output:** Find  $g(z_1, z_2 \dots z_k)$  efficiently.

Our technique: For so

For some  $\mathbf{a} \in \mathbb{C}^n$ 

 $\int \frac{\text{Taylor expansion}}{g(q_1(\mathbf{a} + \mathbf{x}), q_2(\mathbf{a} + \mathbf{x}), \dots, q_k(\mathbf{a} + \mathbf{x}))}$ 

 $q_i(\mathbf{a} + \mathbf{x}) = q_i(\mathbf{a}) + \sum_{j=1}^n x_j \cdot \frac{\partial q_i}{\partial x_j}(\mathbf{a}) + \text{higher degree components}$ 

Input:

- 1.  $g(q_1, q_2, ..., q_k)$  where  $q_i \in \mathbb{C}[x_1, x_2, ..., x_n]$  and  $q_i$ 's are algebraically independent.
- g is a homogeneous poly of degree d where {q<sub>1</sub>, q<sub>2</sub>...q<sub>k</sub>} satisfies some special property.

**Output:** Find  $g(z_1, z_2 \dots z_k)$  efficiently.

Our technique: For so

For some  $\mathbf{a} \in \mathbb{C}^n$ 

 $\int \text{Taylor expansion} g(q_1(\mathbf{a} + \mathbf{x}), q_2(\mathbf{a} + \mathbf{x}), \dots, q_k(\mathbf{a} + \mathbf{x}))$ 

 $q_i(\mathbf{a} + \mathbf{x}) = \sum_{j=1}^n x_j \cdot \frac{\partial q_i}{\partial x_j}(\mathbf{a}) + \text{higher degree components (for } q_i(\mathbf{a}) = 0)$ 

Input:

- 1.  $g(q_1, q_2, ..., q_k)$  where  $q_i \in \mathbb{C}[x_1, x_2, ..., x_n]$  and  $q_i$ 's are algebraically independent.
- g is a homogeneous poly of degree d where {q<sub>1</sub>, q<sub>2</sub>...q<sub>k</sub>} satisfies some special property.

**Output:** Find  $g(z_1, z_2 \dots z_k)$  efficiently.

Our technique: For so

For some  $\mathbf{a} \in \mathbb{C}^n$ 

$$\int \text{Taylor expansion} g(q_1(\mathbf{a} + \mathbf{x}), q_2(\mathbf{a} + \mathbf{x}), \dots, q_k(\mathbf{a} + \mathbf{x}))$$

 $q_i(\mathbf{a} + \mathbf{x}) = \text{linear component}(\mathcal{L}_i) + \text{higher degree components}(\mathcal{H}_i)$ 

Input:

- 1.  $g(q_1, q_2, ..., q_k)$  where  $q_i \in \mathbb{C}[x_1, x_2, ..., x_n]$  and  $q_i$ 's are algebraically independent.
- g is a homogeneous poly of degree d where {q<sub>1</sub>, q<sub>2</sub>...q<sub>k</sub>} satisfies some special property.

**Output:** Find  $g(z_1, z_2 \dots z_k)$  efficiently.

Our technique: For some  $\mathbf{a} \in \mathbb{C}^n$ 

Taylor expansion

 $g(\mathcal{L}_1(\mathbf{x}) + \mathcal{H}_1(\mathbf{x}), \mathcal{L}_2(\mathbf{x}) + \mathcal{H}_2(\mathbf{x}), \dots \mathcal{L}_k(\mathbf{x}) + \mathcal{H}_k(\mathbf{x}))$ 

 $q_i(\mathbf{a} + \mathbf{x}) = \text{linear component}(\mathcal{L}_i) + \text{higher degree components}(\mathcal{H}_i)$ 

Input:

- 1.  $g(q_1, q_2, ..., q_k)$  where  $q_i \in \mathbb{C}[x_1, x_2, ..., x_n]$  and  $q_i$ 's are algebraically independent.
- g is a homogeneous poly of degree d where {q<sub>1</sub>, q<sub>2</sub>...q<sub>k</sub>} satisfies some special property.

**Output:** Find  $g(z_1, z_2 \dots z_k)$  efficiently.

Our technique:

For some  $\mathbf{a} \in \mathbb{C}^n$ 

Taylor expansion

 $g(\mathcal{L}_1(\mathbf{x}) + \mathcal{H}_1(\mathbf{x}), \mathcal{L}_2(\mathbf{x}) + \mathcal{H}_2(\mathbf{x}), \dots \mathcal{L}_k(\mathbf{x}) + \mathcal{H}_k(\mathbf{x}))$ 

Input:

- 1.  $g(q_1, q_2, ..., q_k)$  where  $q_i \in \mathbb{C}[x_1, x_2, ..., x_n]$  and  $q_i$ 's are algebraically independent.
- g is a homogeneous poly of degree d where {q<sub>1</sub>, q<sub>2</sub>...q<sub>k</sub>} satisfies some special property.

**Output:** Find  $g(z_1, z_2 \dots z_k)$  efficiently.

Input:

- 1.  $g(q_1, q_2, ..., q_k)$  where  $q_i \in \mathbb{C}[x_1, x_2, ..., x_n]$  and  $q_i$ 's are algebraically independent.
- g is a homogeneous poly of degree d where {q<sub>1</sub>, q<sub>2</sub>...q<sub>k</sub>} satisfies some special property.

**Output:** Find  $g(z_1, z_2 \dots z_k)$  efficiently.

Our technique:For some  $\mathbf{a} \in \mathbb{C}^n$  $\[ \] Taylor expansion \] g(\mathcal{L}_1(\mathbf{x}) + \mathcal{H}_1(\mathbf{x}), \mathcal{L}_2(\mathbf{x}) + \mathcal{H}_2(\mathbf{x}), \dots \mathcal{L}_k(\mathbf{x}) + \mathcal{H}_k(\mathbf{x})) \] \] \] degree \ d \ component \] g(\mathcal{L}_1(\mathbf{x}), \mathcal{L}_2(\mathbf{x}), \dots \mathcal{L}_k(\mathbf{x})) \]$ 

Input:

- 1.  $g(q_1, q_2, ..., q_k)$  where  $q_i \in \mathbb{C}[x_1, x_2, ..., x_n]$  and  $q_i$ 's are algebraically independent.
- g is a homogeneous poly of degree d where {q<sub>1</sub>, q<sub>2</sub>...q<sub>k</sub>} satisfies some special property.

**Output:** Find  $g(z_1, z_2 \dots z_k)$  efficiently.

Our technique:For some  $\mathbf{a} \in \mathbb{C}^n$  $\[ \] Taylor expansion \]<math>g(\mathcal{L}_1(\mathbf{x}) + \mathcal{H}_1(\mathbf{x}), \mathcal{L}_2(\mathbf{x}) + \mathcal{H}_2(\mathbf{x}), \dots \mathcal{L}_k(\mathbf{x}) + \mathcal{H}_k(\mathbf{x})) \]$  $\[ \] degree \ d \ component \]<math>g(\mathcal{L}_1(\mathbf{x}), \mathcal{L}_2(\mathbf{x}), \dots \mathcal{L}_k(\mathbf{x})) \]$  $\[ \] linear \ transformation \]$ 

Input:

- 1.  $g(q_1, q_2, ..., q_k)$  where  $q_i \in \mathbb{C}[x_1, x_2, ..., x_n]$  and  $q_i$ 's are algebraically independent.
- g is a homogeneous poly of degree d where {q<sub>1</sub>, q<sub>2</sub>...q<sub>k</sub>} satisfies some special property.

**Output:** Find  $g(z_1, z_2 \dots z_k)$  efficiently.

## Key lemma

- 1. g is a homogeneous poly of degree d.
- 2.  $g(q_1, q_2, ..., q_k)$  has a small formula, where  $q_i \in \mathbb{C}[x_1, x_2, ..., x_n]$  and  $q_i$ 's are algebraically independent.

There exists a point 'a' s.t.

i  $q_i(\mathbf{a}) = 0$  for all *i*.

ii The rank of the Jacobian matrix of  $q_1, q_2, \ldots, q_k$  when evaluated at 'a' is equal to its symbolic rank.

 $g(z_1, z_2 \dots z_k)$  has a small formula.

## Summary of results

#### Theorem

 $\exists \mathbf{b} \in \mathbb{C}^n \text{ s.t. for any homogeneous polynomial } f \in \mathbb{C}[\mathbf{x}] \text{ of deg } d$ , if  $f_{sym} = f(e_1 - b_1, \dots, e_n - b_n)$  then,

$$L(f) \leq \mathcal{O}(L(f_{sym})^2 n)$$

$$L(f) \stackrel{\text{def}}{=} \textit{formula size of } f$$

#### Theorem

There exists a  $\lambda$  s.t.  $S_{\lambda}$  does not have a small formula unless the Determinant has.

#### Theorem

There are Generalized Vandermonde determinants which do not have small formulas if the determinant does not.

1. Can we eliminate the homogeneity constraint on g?

- 1. Can we eliminate the homogeneity constraint on g?
- 2. Can we eliminate the special properties?

- 1. Can we eliminate the homogeneity constraint on g?
- 2. Can we eliminate the special properties?
- 3. Can we prove a Bläser & Jindal kind of statement for formulas and ABPs in general?

Thank you!