Some algebraic algorithms and complexity classes inspired by connections between matrix spaces and graphs

Youming Liao
University of Technology Sydney
@ Workshop on Algebraic Complexity Theory (WACT) 2023
30 March, 2023

Some typos corvected, N. B, added, on 5 April.

1. Some connections between graphs and matrix spaces
2. Algorithm: alternating paths and Wong sequences
3. Complexity: graph isomorphism and matrix space equivalence
4. More connections, more problems

* Based on the following joint works:
- Yinan Li, Youming Qiao, Avi Wigderson, Yuval Wigderson, Chuanqi Zhang: Connections between graphs and matrix spaces. CoRR abs/2206.04815 (2022). To appear in Israel J Maths
- Joshua A. Grochow, Youming Qiao: On the complexity of isomorphism problems for tensors, groups, and polynomials I: Tensor Isomorphism-completeness. ITCS 2021: 31:1-31:19.
- Gábor Ivanyos, Youming Qiao, K. V. Subrahmanyam: Constructive non-commutative rank computation is in deterministic polynomial time. Comput. Complex. 27(4): 561-593 (2018).
- Yinan Li, Youming Qiao: Linear algebraic analogues of the graph isomorphism problem and the Erdős-Rényi model. FOCS 2017: 463-474.

From graphs to matrix spaces

* For $n \in \mathbb{N},[n]:=\{1,2, \cdots, n\}$. $\mathbb{F}:$ a field
* $M(n, \mathbb{F})$: the linear space of $n \times n$ matrices over \mathbb{F}
* For $i, j \in[n], E_{i, j} \in M(n, \mathbb{F})$ is the (i, j) th elementary matrix

$$
E_{i, j}=i\left[\begin{array}{cccc}
0 & 0 & 1^{j} & 0 \\
\vdots & \vdots & 1 & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

From graphs to matrix spaces

* For $n \in \mathbb{N},[n]:=\{1,2, \cdots, n\}$. $\mathbb{F}:$ a field
* $M(n, \mathbb{F})$: the linear space of $n \times n$ matrices over \mathbb{F}
* For $i, j \in[n], E_{i, j} \in M(n, \mathbb{F})$ is the (i, j) th elementary matrix
* A bipartite graph $G=(L \cup R, F) \Rightarrow A$ matrix space $B_{G} \subseteq M(n, \mathbb{F})$

$$
L=R=[n], F \subseteq L \times R \quad B_{G}=\operatorname{span}\left\{E_{i, j} \mid(i, j) \in F\right\}
$$

From graphs to matrix spaces

* For $n \in \mathbb{N},[n]:=\{1,2, \cdots, n\}$. $\mathbb{F}:$ a field
* $M(n, \mathbb{F})$: the linear space of $n \times n$ matrices over \mathbb{F}
* For $i, j \in[n], E_{i, j} \in M(n, \mathbb{F})$ is the (i, j) th elementary matrix
* A bipartite graph $G=(L \cup R, F) \Rightarrow A$ matrix space $B_{G} \subseteq M(n, \mathbb{F})$

$$
L=R=[n], F \subseteq L \times R \quad \Rightarrow \quad B_{G}=\operatorname{span}\left\{E_{i, j} \mid(i, j) \in F\right\}
$$

Observation. (Tutte, Edmonds, Lovász)
G has a perfect matching $\Leftrightarrow B_{G}$ contains a full-rank matrix

Connections between graphs and matrix spaces
Observation. (Tutte, Edmonds, Lovász)
G has a perfect matching $\Leftrightarrow B_{G}$ contains a full-rank matrix

* A classical result of the type: G has property P iff $B _G$ has property Q

Connections between graphs and matrix spaces

Observation. (Tutte, Edmonds, Lovász)
G has a perfect matching $\Leftrightarrow B_{G}$ contains a full-rank matrix

* A classical result of the type: G has property P iff $B _G$ has property Q
* Symbolic determinant identity testing (SDIT) essentially asks to test if a general matrix space contains a full-rank matrix: a problem of key importance in algebraic complexity [Kabanets-Impagliazzo]
* Quasi-NC algorithm for perfect matching [Fenner-Gurjar-Thierauf]
* We now examine another side of the above observation

Another correspondence between graph and matrix space structures

$$
\text { * } \begin{aligned}
G_{T} & =(L \cup R, F) \quad \Rightarrow \quad B_{G}=\operatorname{span}\left\{E_{i, j} \mid(i, j) \in F\right\} \subseteq M(n, \mathbb{F}) \\
L & =R=[n]
\end{aligned}
$$

Obs. G has a perfect matching $\Leftrightarrow B_{G}$ contains a full-rank matrix

Prop. (Hall) G has a shrunk subset $\Leftrightarrow B_{G}$ has a shrunk subspace

$$
\begin{array}{ll}
S \subseteq L,|S|>|N(S)| & S \subseteq \mathbb{F}^{n}, \operatorname{dim}(S)>\operatorname{dim}\left(B_{G}(S)\right) \\
N(S) \subseteq R \text { is the set } & B_{G}(S)=\operatorname{span}\left(\bigcup_{B \in B_{G}} B(S)\right) \\
\text { of neighbours of } S &
\end{array}
$$

\checkmark neighbours of

Another correspondence between graph and matrix space structures

$$
\text { * } \begin{aligned}
G & =(L \cup R, F) \quad \Rightarrow \quad B_{G}=\operatorname{span}\left\{E_{i, j} \mid(i, j) \in F\right\} \subseteq M(n, \mathbb{F}) \\
L & =R=[n]
\end{aligned}
$$

Obs. G has a perfect matching $\Leftrightarrow B_{G}$ contains a full-rank matrix
Prop. (Hall) G has a shrunk subset $\Leftrightarrow B_{G}$ has a shrunk subspace

* Non-commutative rational identity testing (NC-RIT) essentially asks to test if a general matrix space admits a shrunk subspace [Hrubeš-Wigderson]
* Geometric complexity theory [Mulmuley], polynomial identity testing [DerksenMakam], non-commutative algebra [Conn], analysis [Garg-Gurvits-Oliveira-Wigderson]...

SDIT versus NC-RIT

\qquad
\qquad
\qquad
\qquad
\qquad

SDIT versus NC-RIT

* SDIT: in coRP over large fields. A major open problem to derandomise it.
* NC-RIT: in P by [Garg-Gurvits-Oliveira-Wigderson], [Ivanyos-Q-Subrahmanyam],
[Hadama-Hirai]

Linear algebraic alternating path method

* The Ivanyos-Q-Subrahmanyam algorithm for NC-RIT:
- A linear algebraic alternating path method [Ivanyos-Karpinski-Q-Santha]
- A "regularity lemma" for matrix space blow-ups (via division algebras)
* Alternating path method on bipartite graphs:
* $G=(L \cup R, E), M \subseteq E$ is a given matching, $U=E \backslash M$: apes not in M

So $\subseteq L$: unmatched vertices
$\Rightarrow T_{1} \subseteq R$: neigh tours of S_{0} via unmatched edges

- if T_{1} contains an unmatched vertex, an augmenting path is found
- otherwise...

Review of alternating paths on bipartite graphs

* $G=(L \cup R, E), M \subseteq E$ is a given matching, $U=E \backslash M$: edges not in M

So $\subseteq L$: unmatched vertices
$S, \subseteq L: n \cdot b \cdot$ of T, via matched edges

Review of alternating paths on bipartite graphs

* $G=(L \cup R, E), M \subseteq E$ is a given matching, $U=E \backslash M$: edges not in M

So $\subseteq L$: unmatched vertices
$S, \subseteq L: n \cdot b$. of T, via matched edges
$T_{2} \subseteq R$: nib. of S_{1} via unmatched edges

- Check if T_{2} contains an unmatched vertex
- Yes: augmenting path. No: continue

Review of alternating paths on bipartite graphs

* $G=(L \cup R, E), M \subseteq E$ is a given matching, $U=E \backslash M$: edges not in M

So $\subseteq L$: unmatched vertices
$S, \subseteq L: n \cdot b \cdot$ of T, via matched edges
$T_{1} \subseteq R$: neigh tours of S_{0} via unmatched edges
$T_{2} \subseteq R: n \cdot b \cdot$ of S_{1} via unmatched edges

- Check if T_{2} contains an unmatched vertex
- Yes: augmenting path. No: continue

STOP if T_{i} consists of matched vertices and $T_{i} \subseteq T_{1} \cup T_{2} \cup \cup T_{i-1}$

Linear algebraic alternating path method

* $B=\operatorname{span}\left\{B_{1}, \cdots, B_{m}\right\} \subseteq M(n, \mathbb{F}) . \quad C \in B$

$$
\frac{S_{0}}{l}=\operatorname{ker}(C) \subseteq \mathbb{F}^{n}
$$

"unmatched vertices"

Linear algebraic alternating path method

* $B=\operatorname{span}\left\{B_{1}, \cdots, B_{m}\right\} \subseteq M(n, \mathbb{F}) . \quad C \in B$

$$
S_{0}=\operatorname{ker}(C) \subseteq \mathbb{T}^{n} \stackrel{B}{\Longrightarrow} T_{1}=B\left(S_{0}\right):=\operatorname{span}\left\{B_{1}\left(S_{0}\right) \cup \cdots \cup B_{m}\left(S_{0}\right)\right\} \subseteq \mathbb{T}^{n}
$$

Linear algebraic alternating path method

* $B=\operatorname{span}\left\{B_{1}, \cdots, B_{m}\right\} \subseteq M(n, \mathbb{F}) . \quad c \in B$

$$
S_{0}=\operatorname{ker}(C) \subseteq \mathbb{T}^{n} \stackrel{B}{\Longrightarrow} T_{1}=B\left(S_{0}\right):=\operatorname{span}\left\{B_{1}\left(S_{0}\right) \cup \cdots \cup B_{m}\left(S_{0}\right)\right\} \subseteq \mathbb{F}^{n}
$$

- If $T_{1} \Phi$ in (C), can compute $D \in B$ of larger rank
- Otherwise... "Ti contains an unmatched vector"

Linear algebraic alternating path method

* $B=\operatorname{span}\left\{B_{1}, \cdots, B_{m}\right\} \subseteq M(n, \mathbb{F}) . \quad C \in B$

$$
\begin{aligned}
& S_{0}=\operatorname{ker}(C) \subseteq \mathbb{F}^{n} \stackrel{B}{\stackrel{B}{C-1}} T_{1}=B\left(S_{0}\right):=\operatorname{span}\left\{B_{1}\left(S_{0}\right) \cup \cdots \cup B_{m}\left(S_{0}\right)\right\} \subseteq \operatorname{Im}(C) \\
& S_{1}=C^{-1}\left(T_{1}\right):=\left\{v \in \mathbb{T}^{n} \mid C(v) \in T_{1}\right\}
\end{aligned}
$$

Linear algebraic alternating path method

* $B=\operatorname{span}\left\{B_{1}, \cdots, B_{m}\right\} \subseteq M(n, \mathbb{F}) . \quad C \in B$

$$
S_{0}=\operatorname{ker}(C) \subseteq \mathbb{T}^{n} \underset{C^{-1}}{\stackrel{B}{\Longrightarrow}} T_{1}=B\left(S_{0}\right):=\operatorname{span}\left\{B_{1}\left(S_{0}\right) \cup \cdots \cup B_{m}\left(S_{0}\right)\right\} \subseteq \operatorname{Im}(C)
$$

$$
\begin{array}{r}
S_{1}=C^{-1}\left(T_{1}\right):=\left\{v \in \mathbb{F}^{n} \mid C(v) \in T_{1}\right\} \\
\stackrel{B}{\Longrightarrow} T_{2}=B\left(S_{1}\right)
\end{array}
$$

- Check if $T_{2} \not \ddagger i m(C)$.
- Yes: cannot find D of larger rank in B but "do so in $\beta \otimes M(n, \mathbb{F})$ "
- No: continue

Linear algebraic alternating path method

$$
\begin{aligned}
& * B=\operatorname{span}\left\{B_{1}, \cdots, B_{m}\right\} \subseteq M(n, \mathbb{F}) . C \in B \\
& S_{0}= \operatorname{ker}(C) \subseteq \mathbb{F}^{n} \stackrel{B}{\stackrel{C^{-1}}{\Longrightarrow}} T_{1}=B\left(S_{0}\right):=\operatorname{span}\left\{B_{1}\left(S_{0}\right) \cup \cdots \cup B_{m}\left(S_{0}\right)\right\} \subseteq \mathbb{F}^{n} \\
& S_{1}=C^{-1}\left(T_{1}\right):=\left\{\cup \in \mathbb{F}^{n} \mid C(v) \in T_{1}\right\} \\
& \stackrel{B}{\Longrightarrow} T_{2}=B\left(S_{1}\right) \\
& \vdots \text { STOP if } T_{i+1}=T_{i} \subseteq \operatorname{im}(C)
\end{aligned}
$$

Lemma. [Ivanyos - Karpinski- Q-Santha] B has a shrunk subspace of gap corank (C) iff $\exists i, \quad T_{i+1}=T_{i} \subseteq i m(C)$

Recap for the NC-RIT story

* Start with "G has property P iff B_G has property Q"
* Go on to examine the problem of testing " B has property Q "
N.B. This is just one way of arriving at NC-RIT

Recap for the NC-RIT story

* Start with " G has property P iff $B _G$ has property Q "
* Go on to examine the problem of testing " B has property Q "
* Inspired by techniques for solving the problem of testing " G has property P "

1. [Garg-Gurvits-Oliveira-Wigderson] Sinkhorn's scaling algorithm
2. [Ivanyos-Q-Subrahmanyam] the augmenting path algorithm
3. [Hamada-Hirai] submodular optimisation

Recap for the NC-RIT story

* Start with " G has property P iff $B _G$ has property Q "
* Go on to examine the problem of testing " B has property Q "
* Inspired by techniques for solving the problem of testing " G has property P "

1. [Garg-Gurvits-Oliveira-Wigderson] Sinkhorn's scaling algorithm
2. [Ivanyos-Q-Subrahmanyam] the augmenting path algorithm
3. [Hamada-Hirai] submodular optimisation

* The situation is usually more complicated for testing " B has property Q "
- The discrepancy between "full-rank matrices" and "shrunk subspaces" not having

Graph isomorphism versus matrix space equivalence
Def. $G_{1}=\left(L \cup R, F_{1}\right)$ and $G_{2}=\left(L \cup R, F_{2}\right), L=R=[n], F_{1}, F_{2} \subseteq L \times R$ are isomorphic. if $\exists \sigma, \pi \in S_{n}$, such that $(i, j) \in F_{1} \Leftrightarrow(\sigma(i), \pi(j)) \in F_{2}$

* Bipartite graph iso is as hard as general graph iso

Graph isomorphism versus matrix space equivalence
Def. $G_{1}=\left(L \cup R, F_{1}\right)$ and $G_{2}=\left(L \cup R, F_{2}\right), L=R=[n], F_{1}, F_{2} \subseteq L \times R$ are isomorphic. if $\exists \sigma, \pi \in S_{n}$, such that $(i, j) \in F_{1} \Leftrightarrow(\sigma(i), \pi(j)) \in F_{2}$

* $A_{1}, A_{2} \in M(n, \mathbb{F})$ are equivalent, if $\exists L, R \in C L(n, \mathbb{F}), A_{1}=L A_{2} R$

Def. Matrix spaces $B_{1}, B_{2} \subseteq M(n, \mathbb{F})$ are equivalent, if $\exists L, R \in G L(n, \mathbb{F})$ such that $B_{1}=L B_{2} R:=\left\{L B R \mid B \in B_{2}\right\}$

Graph isomorphism versus matrix space equivalence
Def. $G_{1}=\left(L \cup R, F_{1}\right)$ and $G_{2}=\left(L \cup R, F_{2}\right), L=R=[n], F_{1}, F_{2} \subseteq L \times R$ are isomorphic. if $\exists \sigma, \pi \in S_{n}$, such that $(i, j) \in F_{1} \Leftrightarrow(\sigma(i), \pi(j)) \in F_{2}$

* $A_{1}, A_{2} \in M(n, \mathbb{F})$ are equivalent, if $\exists L, R \in C L(n, \mathbb{F}), A_{1}=L A_{2} R$

Def. Matrix spaces $B_{1}, B_{2} \subseteq M(n, \mathbb{F})$ are equivalent, if $\exists L, R \in G L(n, \mathbb{F})$ such that $B_{1}=L B_{2} R:=\left\{L B R \mid B \in B_{2}\right\}$

Prop. [Li-Q-Wigderson-Wigderson-2hang]
N.B. adapted from Prop 6.2 there
G and H are isomorphic $\Leftrightarrow B_{G}$ and B_{H} are equivalent

Matrix space equivalence
Prop. [Li-Q-Wigderson-Wigderson - 2 hang]
N.B. This gives a poly-time reduction from Graph Iso to G and H are isomorphic $\Leftrightarrow B_{G}$ and B_{H} are equivalent Tensorlco

* Matrix space equivalence as a proper generalisation of graph isomorphism
* Next step: matrix space equivalence for general matrix spaces

Matrix space equivalence
Prop. [Li-Q-Wigderson-Wigderson- Chang]
G and H are isomorphic $\Leftrightarrow B_{G}$ and B_{H} are equivalent

* Matrix space equivalence as a proper generalisation of graph isomorphism
* Next step: matrix space equivalence for general matrix spaces
* Results inspired by the study of graph isomorphism?
- [Li-Q]: individualisation and refinement as used in [Babai-Erdős-Selkow]
* [Grochow-Q]: a complexity class called Tensor Isomorphism (TI) in analogy with - A gadget design in analogy with some method from colored graph isomorphism

Matrix space equivalence as tensor isomorphism

* [Grochow-Q]: a complexity class called Tensor Isomorphism (TI) in analogy with

Matrix space equivalence as tensor isomorphism

* [Grochow-Q]: a complexity class called Tensor Isomorphism (TI) in analogy with
* $B=\operatorname{span}\left\{B_{1}, \cdots, B_{m}\right\} \subseteq M(n, \mathbb{F})$
$B, C \subseteq M(n, \mathbb{F})$ are equivalent
ね

T_{B}. T_{e} ave isomorphic, i.e. in the same orbit under $G L(n, \mathbb{F}) \times G L(n, \mathbb{F}) \times G L(m, \mathbb{F})$.

Matrix space equivalence as tensor isomorphism

* $B=\operatorname{span}\left\{B_{1}, \cdots, B_{m}\right\} \subseteq M(n, \mathbb{F})$
$B, E \subseteq M(n, \mathbb{F})$ are equivalent \Downarrow

T_{B}. Te ave isomorphic, i.e. in the same orbit under $G L(n, \mathbb{F}) \times G L(n, \mathbb{F}) \times G L(m, \mathbb{F})$.

Def. [Grochow-Q] The complexity class TI consists of problems polynomial-time reducible to the matrix space equivalence $=3$-tensor isomorphism problem.

* Wishful thinking: just as GI captures isomorphism problems for combinatorial structures, TI captures isomorphism problems for algebraic structures

Actions on 3-way arrays

* $R, S, T \in G L(n, \mathbb{F})$

R

R

Actions on 3-way arrays

* $R, S, T \in G L(n, \pi)$

Tensor

$$
t: U \times V \times W \rightarrow \mathbb{F}
$$

Bilinear map

$$
f: u \times u \rightarrow w
$$

* $U, V, W \cong \mathbb{F}^{n}$

Algebra
$a: u \times u \rightarrow u$

Trilinear Form
c: $u \times u \times u \rightarrow \mathbb{F}$

3-way arrays are versatile

* Under different actions, 3-way arrays encode tensors, bilinear maps, algebras, and trilinear forms
* Putting some structural restrictions we get more

1. Symmetric bilinear maps $f: U x U->V$: systems of quadratic forms
2. Skew-symmetric bilinear maps over GF(p): p-groups of class 2 and exponent p
3. Symmetric trilinear forms over F, $\operatorname{char}(F)$ not 2 or 3: cubic forms
4. Associativity, Jacobi conditions...: associative algebras or Lie algebras

TI-complete problems

Theorem. [Futorny-Grochow-Sergeichuk, Grochow-Q]
The following problems are TI-complete:

- Isomorphism of p-groups of class 2 and exponent p, given by matrix groups
- Isomorphism of systems of quadratic forms, cubic forms
- Isomorphism of associative and Lie algebras

TI-complete problems

Theorem. [Futorny-Grochow-Sergeichuk, Grochow-Q]
The following problems are TI-complete:

- Isomorphism of p-groups of class 2 and exponent p, given by matrix groups
- Isomorphism of systems of quadratic forms, cubic forms
- Isomorphism of associative and Lie algebras
* How about d-tensors for d>3? Note that 2-tensor isomorphism (matrix equivalence) is easy.

$$
d, d>3
$$

Theorem. [Grochow-Q].K-tensor isomorphism reduces to 3-tensor isomorphism.

* In the spirit that 3SAT is NP-complete, and 2SAT is in P.

Methods for relating the problems

* Two techniques for relating 3-way arrays under different actions: GelfandPanomerav and gadget methods
* The gadgets are reminiscent of those used for colored graph isomorphism

Methods for relating the problems

* Two techniques for relating 3-way arrays under different actions: GelfandPanomerav and gadget methods
* The gadgets are reminiscent of those used for colored graph isomorphism

- Star gadgets:

Degrees of red vertices are large enough so blue vertices cannot be mapped to them

One example of the reductions
Goal. Given $f, g: u \times v \times W \rightarrow \mathbb{F}$, construct $\hat{f}, \hat{g}: S \times S \rightarrow T$, skew-symmetric such that $f \sim g$ under $G L(U) \times G L(V) \times G L(W)$ iff $\hat{f} \sim \hat{g}$ under $G L(S) \times G L(T)$

Construction

$$
\begin{aligned}
& \operatorname{dim}(u)=e \\
& \operatorname{dim}(V)=n \\
& \operatorname{dim}(W)=m
\end{aligned}
$$

$$
\Rightarrow \quad \begin{aligned}
& S=U \oplus V \\
& T=W
\end{aligned}
$$

(Entries outside the orange region are 0).

From tensors to bilinear maps
Construction

$$
\begin{aligned}
& \operatorname{dim}(u)=e \\
& \operatorname{dim}(V)=n \\
& \operatorname{dim}(w)=m
\end{aligned}
$$

$$
\begin{aligned}
& S=U \oplus V \\
& T=W
\end{aligned}
$$

(Entries outside the orange region are 0).

* This construction does not work because GL(S) may mix U with V. So we need:

From tensors to bilinear maps

Construction

$$
\begin{aligned}
& \operatorname{dim}(U)=e \\
& \operatorname{dim}(V)=n \\
& \operatorname{dim}(W)=m
\end{aligned}
$$

$$
\begin{aligned}
& S=U \oplus V \\
& T=W
\end{aligned}
$$

(Entries outside the orange region are 0).

* This construction does not work because $\mathrm{GL}(\mathrm{S})$ may mix U with V. So we need:

More correspondences, more questions

* A directed graph $G=(V, F) \Rightarrow B_{G}=\operatorname{span}\left\{E_{i, j} \mid(i, j) \in F\right\} \subseteq M(n, \mathbb{F})$.

$$
V=[n], F \subseteq V \times V
$$

Prop.[Li-Q-Wigderson-Wigderson-Zhang]
G is acyclic $\Leftrightarrow B_{G}$ contains only nilpotent matrices

* Not so surprising, but...

More correspondences, more questions

* A directed graph $G=(V, F) \Rightarrow B_{G}=\operatorname{span}\left\{E_{i, j} \mid(i, j) \in F\right\} \subseteq M(n, \mathbb{F})$.

$$
V=[n], F \subseteq V \times V
$$

Prop.[Li-Q-Wigderson-Wigderson-Zhang]
G is acyclic $\Leftrightarrow B G$ contains only nilpotent matrices
Prop. [ibid.] Max size over acyclic subgraphs in G
$=$ Max dim over nilpotent subspaces in B_{G}

* Generalise Gerstenhaber's result :
max dim of nilpotent matrix spaces in $M(n, \mathbb{F})=\binom{n}{2}$

Def. (Matrix space nilpotency testing) Given a linear basis of a matrix space B, decide if B contains only nilpotent matrices.

* Given a symbolic matrix S of size n, decide if $S^{\wedge} n$ is the zero matrix.
* Reduces to SDIT, which is equivalent to asking whether the $(1,1)$ entry of $S^{\wedge} n$ is 0
* The naturally associated group action is matrix conjugation (instead of left-right) on matrix tuples. The nullcone problem, rank-1 spanned setting, etc. are easier.
* SDIT reduces to computing the nilpotency index [Li-Q-Wigderson-Wigderson-Zhang]
* A pattern of the stories:

1. Start with " G has property P iff B _ G has property Q "
2. Ask the question " B has property Q "
3. Devise linear algebraic analogues of graph-theoretic methods

* Shrunk subset vs shrunk subspace, graph isomorphism vs tensor isomorphism
* Alternating paths vs Wong sequences, graph coloring gadgets vs rank gadgets
* Will matrix space nilpotency test be the next target?

Thank you!

And questions please :)

