Border Complexity of Symbolic Determinant with Rank 1 constraint

$$
\text { FACT } 2023
$$

(University of Warwick)
Joint work with Althranil Chatterjee, Sumanta Ghost and Ronit Gurjar

Symbolic Determinant

$$
\begin{aligned}
& X=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}, \mathbb{F} \\
& A=\left(\begin{array}{ccc}
l_{11}(x) & \cdots & \begin{array}{l}
\text { with colum } \\
\vdots
\end{array} \\
\vdots & \ddots & l_{i n}(x) \\
l_{r_{1}}(x) & \cdots & l_{r a}(x)
\end{array}\right) \text { isth row }=A_{0}+\sum_{i=1}^{n} A_{i} x_{i} \\
& \operatorname{dog}\left(l_{i j}(x)\right) \leq 1 \\
& \operatorname{det}(A)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} l_{i \pi(i)}
\end{aligned}
$$

Symbolic Determinant

$$
\begin{aligned}
& X=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}, \mathbb{F} \\
& A=\left(\begin{array}{ccc}
l_{11}(x) & \uparrow \cdots & l_{n}(x) \\
\vdots & \ddots & l_{i j}(x) \\
& & \\
l_{r 1}(x) & \cdots & l_{r r}(x)
\end{array}\right) \text { with down }=A_{0}+\sum_{i=1}^{n} A_{i} x_{i} \\
& \operatorname{dog}\left(l_{i j}(x)\right) \leq 1 \\
& \operatorname{det}(A)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} l_{i \pi(i)}
\end{aligned}
$$

Let is universal \rightarrow Any polynomial $f(x)$ can be represented as determinant of a symbolic matrix.

Symbolic Determinant

$$
\begin{aligned}
& X=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}, \mathbb{F} \\
& A=\left(\begin{array}{ccc}
l_{11}(x) & \cdots & \begin{array}{l}
\text { with colum } \\
\vdots
\end{array} \\
\vdots & \ddots & l_{i n}(x) \\
l_{r_{1}}(x) & \cdots & \cdots \\
l_{r a}(x)
\end{array}\right) \text { ito row }=A_{0}+\sum_{i=1}^{n} A_{i} x_{i} \\
& \operatorname{deg}\left(l_{i j}(x)\right) \leq 1 \\
& \operatorname{det}(A)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} l_{i \pi(i)}
\end{aligned}
$$

Let is universal \rightarrow Any polynomial $f(x)$ can be represented as determinant of a symbolic matrix.
The minimum dimension of the matrix to compute f, is called its determinantal complexity $d c(f)$.
$\frac{V B P \text { vs VNP }}{V B P}$
VBP \rightarrow Class of polynomial families $\left\{f_{n} y_{n}\right.$ with $\operatorname{dc}_{c}\left(f_{n}\right)=O\left(n^{c}\right)$

VBP vs VNP
VBP \rightarrow Class of polynomial families $\left\{f_{n}\right\}_{n}$ with $d_{c}\left(f_{n}\right)=O\left(n^{c}\right)$
$\operatorname{perm}_{n} \rightarrow \sum_{\pi \in S_{n}} \prod_{i=1}^{n} x_{i \pi(i)}$
$n \times n$ matrix with $x_{i j}$ as i, j th entry

VBP vs VNP
VBP \rightarrow Class of polynomial families $\left\{f_{n}\right\}_{n}$ with $d_{c}\left(f_{n}\right)=O(n c)$
perm $_{n} \rightarrow \sum_{\pi \in s_{n}} \prod_{i=1}^{n} x_{i \pi(i)} \quad n \times n$ matrix with $x_{i j}$ as i, j th entry
perm is universal. The minimum dimension of the matrix to compute f is called permanental complexity ($p(f)$)
$V N P \rightarrow$ Class of polynomial families $\left\{g_{n}\right\}_{n}$ with $p\left(g_{n}\right)=O\left(n^{c}\right)$

VBP vs VNP
VBP \rightarrow Class of polynomial families $\left\{f_{n} y_{n}\right.$ with $\operatorname{dc}\left(f_{n}\right)=O(n c)$

$$
\text { perm }_{n} \rightarrow \sum_{\pi \in s_{n}} \prod_{i=1}^{n} x_{i \pi(i)} \quad n \times n \text { matrix with } x_{i j} \text { as } i, j \text { th entry }
$$

perm is universal. The minimum dimension of the matrix to compute f is called permanental complexity ($p(f)$)
$V N P \rightarrow$ Class of polynomial families $\left\{g_{n}\right\}_{n}$ with $p\left(g_{n}\right)=O\left(n^{-}\right)$

$$
\begin{aligned}
\text { Valiant's Conjecture } \rightarrow & \text { VP } \neq \text { VNP } \\
& \Uparrow \\
& \operatorname{dc}^{\Uparrow}\left(\text { perm } m_{n}\right)=n^{\omega(1)}
\end{aligned}
$$

VBP vs VNP
VBP \rightarrow Class of polynomial families $\left\{f_{n} y_{n}\right.$ with $\operatorname{dc}_{c}\left(f_{n}\right)=O(n c)$

$$
\operatorname{perm}_{n} \rightarrow \sum_{\pi \in s_{n}} \prod_{i=1}^{n} \ell_{i \pi(i)}
$$

$n \times n$ matrix with $l_{i j}$ as i, j th entry
perm is universal. The minimum dimension of the matrix to compute f is called permanental complexity ($p(f)$)
VNP \rightarrow Class of polynomial families $\left\{g_{n}\right\}_{n}$ with $p\left(g_{n}\right)=O\left(n^{-}\right)$

$$
\left.\begin{array}{rl}
\text { Valiant's Conjecture } \rightarrow \text { VP } & \neq V N P \\
& \Uparrow \\
& \operatorname{dc}^{\boldsymbol{I}}\left(\text { perm } m_{n}\right)
\end{array}\right)=n^{\omega(1)} .
$$

Mulmuley and Sohoni proposed Geometric Complexity Theory as a passible approach to prove the conjecture

Approximative Closure
Def: Let C be a class of polynomials.
A polynomial $g(x)$ is said to be in \bar{C}, if there is a sequence of polynomials in C converging to $g(x)$.

Approximative Closure
Def: Let C be a class of polynomials.
A polynomial $g(x)$ is said to be in \bar{C}, if there is a sequence of polynomials in C converging to $g(x)$.
Equivalently,
If there is a polynomial $g_{\epsilon} \in \mathbb{C}[\epsilon][x]$ in C st. $\lim _{\epsilon \rightarrow 0} g_{\epsilon}(x)=g(x) \quad$ [Coefficient Wise]

Approximative Closure
Def: Let C be a class of polynomials.
A polynomial $g(x)$ is said to be in \bar{C}, if there is a sequence of polynomials in C converging to $g(x)$.
Equivalently,
If there is a polynomial $g_{\epsilon} \in \mathbb{C}[\epsilon][x]$ in C st. $\lim _{\epsilon \rightarrow 0} g_{\epsilon}(x)=g(x) \quad$ [Coefficient Wise]

Examples:

$$
W R_{2}=\left\{(a x+b y)^{3}+(c x+d y)^{3}: a, b, c, d \in \mathbb{C}\right\}
$$

Approximative Closure
Def: Let C be a class of polynomials.
A polynomial $g(x)$ is said to be in \bar{C}, if there is a sequence of polynomials in C converging to $g(x)$.
Equivalently,
If there is a polynomial $g_{\epsilon} \in \mathbb{C}[\epsilon][x]$ in C st.

$$
\lim _{\epsilon \rightarrow 0} g_{\epsilon}(x)=g(x) \quad \text { [Coefficient Wise] }
$$

Examples:

$$
\begin{aligned}
& W R_{2}=\left\{(a x+b y)^{3}+(c x+d y)^{3}: a, b, c, d \in \mathbb{C}\right\} \\
& f(x, y)=x^{3}+3 x^{2} y=1 / 2\left[(x+y)^{3}+(x-y)^{3}\right] \in W R_{2}
\end{aligned}
$$

Approximative Closure
Def: Let C be a class of polynomials.
A polynomial $g(x)$ is said to be in \bar{C}, if there is a sequence of polynomials in C converging to $g(x)$.
Equivalently,
If there is a polynomial $g_{\epsilon} \in \mathbb{C}[\epsilon][x]$ in C sit.

$$
\lim _{\epsilon \rightarrow 0} g_{\epsilon}(x)=g(x) \quad \text { [Coefficient Wise] }
$$

Examples:

$$
\begin{aligned}
& W R_{2}=\left\{(a x+b y)^{3}+\left((x+d y)^{3}: a, b, c, d \in \mathbb{C}\right\}\right. \\
& f(x, y)=x^{3}+3 x^{2} y=1 / 2\left[(x+y)^{3}+(x-y)^{3}\right] \in W R_{2} \\
& g_{\epsilon}(x, y)=1 / \epsilon(y+\epsilon x)^{3}-1 / \epsilon y^{3}=3 x y^{2}+3 \epsilon x^{2} y+\epsilon^{2} x^{3}
\end{aligned}
$$

Approximative Closure
Def: Let C be a class of polynomials.
A polynomial $g(x)$ is said to be in \bar{C}, if there is a sequence of polynomials in C converging to $g(x)$.
Equivalently,
If there is a polynomial $g_{\epsilon} \in \mathbb{C}[\epsilon][x]$ in C sit.

$$
\lim _{\epsilon \rightarrow 0} g_{\epsilon}(x)=g(x) \quad \text { [Coefficient Wise] }
$$

Examples:

$$
\begin{aligned}
& W R_{2}=\left\{(a x+b y)^{3}+\left((x+d y)^{3}: a, b, c, d \in \mathbb{C}\right\}\right. \\
& f(x, y)=x^{3}+3 x^{2} y=1 / 2\left[(x+y)^{3}+(x-y)^{3}\right] \in W R_{2} \\
& g_{\epsilon}(x, y)=1 / \epsilon(y+\epsilon x)^{3}-1 / \epsilon y^{3}=3 x y^{2}+3 \epsilon x^{2} y+\epsilon^{2} x^{3} \\
& g=\lim _{\epsilon \rightarrow 0} g_{\epsilon}=3 x y^{2} \in W R_{2} \text { but } \in W R_{2}
\end{aligned}
$$

$\overline{V B P}_{\text {vs }} V N P$ Conjecture
$\overline{V B P} \rightarrow$ Class of polynomial families $\left\{f_{n}\right\}_{n}$ for which, there is $p(n) \times p(n)$ matrix A_{n} whose entries are polynomials in $\mathbb{F}(t)[x]$ of deg ≤ 1 with $p(n)=O\left(n^{c}\right) \&$

$$
\lim _{t \rightarrow 0} \operatorname{det}\left(A_{n}\right)=f_{n}
$$

$\overline{V B P}_{\text {vs }} V N P$ Conjecture
$\overline{V B P} \rightarrow$ Class of polynomial families $\left\{f_{n}\right\}_{n}$ for which, there is $p(n) \times p(n)$ matrix A_{n} whose entries are polynomials in $\mathbb{F}(t)[x]$ of deg ≤ 1 with $p(n)=O\left(n^{c}\right) \&$

$$
\lim _{t \rightarrow 0} \operatorname{det}\left(A_{n}\right)=f_{n}
$$

Mulmule-Sohoni and Bürgisser strengthened Valiant's Conjecture to

$$
V N P \nsubseteq \overline{V B P}
$$

$\overline{V B P}_{\text {vs }} V N P$ Conjecture
$\overline{V B P} \rightarrow$ Class of polynomial families $\left\{f_{n}\right\}_{n}$ for which, there is $p(n) \times p(n)$ matrix A_{n} whose entries are polynomials in $\mathbb{F}(t)[x]$ of $\operatorname{deg} \leq 1$ with $p(n)=O\left(n^{c}\right)$ \&

$$
\lim _{t \rightarrow 0} \operatorname{det}\left(A_{n}\right)=f_{n}
$$

Mulmule-Sohoni and Bürgisser strengthened Valiant's Conjecture to

$$
V N P \nsubseteq \overline{V B P}
$$

$\overline{V B P} \stackrel{?}{=} V B P \quad$ Major open question of $G C T$ (Results are known for some subclasses)

Known Results $(c=\bar{c})$

$$
\overline{\Sigma^{\gamma} \pi}=\Sigma^{\gamma} \pi \quad \text { and } \overline{\Pi^{\gamma} \Sigma}=\Pi^{\gamma} \Sigma
$$

Known Results $(c=\bar{c})$
$\overline{\Sigma^{\gamma} \pi}=\Sigma^{\gamma} \pi$ and $\overline{\pi^{\gamma} \Sigma}=\pi^{\gamma} \Sigma$
ROABP \rightarrow Exactly one variole occur in each
layer of $A B P$

$$
\overline{R O A B P}=\operatorname{ROABP} \quad\left[\text { Nisan }^{\prime} 91\right]
$$

Known Results $(c=\bar{c})$
$\overline{\Sigma^{\gamma} \pi}=\Sigma^{\gamma} \pi$ and $\overline{\pi^{\gamma} \Sigma}=\pi^{\gamma} \Sigma$
ROABP \rightarrow Exactly one variole occur in each layer of $A B P$

$$
\begin{aligned}
& \overline{\operatorname{ROABP}}=\text { ROABP } \quad[\text { Nisan' } 91] \\
& \overline{M V B P}={ }^{\mathbb{R}} \quad \operatorname{MVBP} \quad\left[B I M P S^{\prime} 20\right] \\
& \begin{array}{l}
A B P_{s} \text { with } \\
\text { edge label in }
\end{array} \mathbb{R}[\epsilon, \epsilon]_{+}[x] \quad \mathbb{R}_{+}[X]
\end{aligned}
$$

Known Results $(c=\bar{c})$
$\overline{\Sigma^{\gamma} \pi}=\Sigma^{\gamma} \pi$ and $\overline{\pi^{\gamma} \Sigma}=\pi^{\gamma} \Sigma$
ROABP \rightarrow Exactly one variole occur in each layer of $A B P$

$$
\begin{aligned}
& \overline{\operatorname{ROABP}}=\operatorname{ROABP} \quad[\text { Nisan' } 91] \\
& \overline{M V B P}={ }^{\mathbb{R}} \quad \operatorname{MVBP} \quad\left[B I M P S^{\prime} 20\right] \\
& \begin{array}{l}
A B P_{s} \text { with } \mathbb{R}[\epsilon, \epsilon]_{+}[X] \quad \mathbb{R}_{+}[X] \\
\text { edge levels in }
\end{array}
\end{aligned}
$$

This Work \rightarrow Symbolic Determinant with Rank-1 constraint

Rank 1 Constraint
Def:

$$
\begin{aligned}
\operatorname{DET} 1_{k, n}= & \left\{\operatorname{det}\left(A_{0}+\sum_{i=1}^{n} A_{i} x_{i}\right): A_{i} \in \mathbb{C}^{k \times k}, \gamma k\left(A_{i}\right)=1 \forall i \in[n]\right\} \\
& \operatorname{DET} 1_{n} \rightarrow k \text { is poly (n) }
\end{aligned}
$$

Rank 1 Constraint
Def:

$$
\begin{aligned}
\operatorname{DET} 1_{k, n}= & \left\{\operatorname{det}\left(A_{0}+\sum_{i=1}^{n} A_{i} x_{i}\right): A_{i} \in \mathbb{C}^{k \times k}, \gamma k\left(A_{i}\right)=1 \forall i \in[n]\right\} \\
& \operatorname{DET} 1_{n} \rightarrow k \text { is poly (n) }
\end{aligned}
$$

What do we know about this class?

Rank 1 Constraint
Def:

$$
\begin{aligned}
\operatorname{DET} 1_{k, n}= & \left\{\operatorname{det}\left(A_{0}+\sum_{i=1}^{n} A_{i} x_{i}\right): A_{i} \in \mathbb{C}^{k \times k}, \gamma k\left(A_{i}\right)=1 \forall i \in[n]\right\} \\
& \operatorname{DET} 1_{n} \rightarrow k \text { is poly (n) }
\end{aligned}
$$

What do we know about this class?

* Whitebox PIT [Lova'sz 89]. Blackbox PIT [Gurjar-Thierauf 18]

Rank 1 Constraint
Def:

$$
\begin{aligned}
\operatorname{DET} 1_{k, n}= & \left\{\operatorname{det}\left(A_{0}+\sum_{i=1}^{n} A_{i} x_{i}\right): A_{i} \in \mathbb{C}^{k \times k}, \gamma k\left(A_{i}\right)=1 \forall i \in[n]\right\} \\
& \operatorname{DET} 1_{n} \rightarrow k \text { is poly (n) }
\end{aligned}
$$

What do we know about this class?

* Whitebox PIT [Lova'sz 89]. Blackbox PIT [Gurjar-Thierauf 18]
* It captures Full Rank Matrix Completion problem when indeterminates are distinct, bipartite matching and others.

Rank 1 Constraint
Def:

$$
\begin{aligned}
\operatorname{DET} 1_{k, n}= & \left\{\operatorname{det}\left(A_{0}+\sum_{i=1}^{n} A_{i} x_{i}\right): A_{i} \in \mathbb{C}^{k \times k}, \gamma k\left(A_{i}\right)=1 \forall i \in[n]\right\} \\
& \operatorname{DET} 1_{n} \rightarrow k \text { is poly (n) }
\end{aligned}
$$

What do we know about this class?

* Whitebox PIT [Lova'sz 89]. Blackbox PIT [Gurjar-Thierauf 18]
* It captures Full Rank Matrix Completion problem when indeterminates are distinct, bipartite matching and others.
* $\operatorname{ROF}_{s, n}($ Read Once Formula $) \subsetneq D E T 1_{r, n}$ where r is poly (s)

Rank 1 Constraint
Def:

$$
\begin{aligned}
\operatorname{DET} 1_{k, n}= & \left\{\operatorname{det}\left(A_{0}+\sum_{i=1}^{n} A_{i} x_{i}\right): A_{i} \in \mathbb{C}^{k \times k}, \gamma k\left(A_{i}\right)=1 \forall i \in[n]\right\} \\
& \operatorname{DET} 1_{n} \rightarrow k \text { is poly (n) }
\end{aligned}
$$

What do we know about this class?

* Whitebox PIT [Lova'sz 89]. Blackbox PIT [Gurjar-Thierauf 18]
* It captures Full Rank Matrix Completion problem when indeterminates are distinct, bipartite matching and others.
* $\operatorname{ROF}_{s, n}\left(\right.$ Read Once Formula) $\subsetneq D E T 1_{r, n}$ where r is poly (s)
* perm n_{n} \& $D E T 1_{k, n}$ for any k. [Aravind-Joglekar 15]

Rank 1 Constraint
Def:

$$
\begin{aligned}
\operatorname{DET} 1_{k, n}= & \left\{\operatorname{det}\left(A_{0}+\sum_{i=1}^{n} A_{i} x_{i}\right): A_{i} \in \mathbb{C}^{k \times k}, \gamma k\left(A_{i}\right)=1 \forall i \in[n]\right\} \\
& \operatorname{DET} 1_{n} \rightarrow k \text { is poly }(n)
\end{aligned}
$$

What do we know about this class?

* Whitebox PIT [Lova'sz 89]. Blackbox PIT [Gurjar-Thierauf 18]
* It captures Full Rank Matrix Completion problem when indeterminates are distinct, bipartite matching and others.
* $\operatorname{ROF}_{s, n}($ Read Once Formula $) \subsetneq D^{\prime} T_{1, n}$ where r is poly (s)
* perm $m_{n} \operatorname{DET1}_{k, n}$ for any k. [Aravind-Joglekar 15]
* $\quad V B P \subseteq \overline{\operatorname{orlit}(D E T 1)}$

Our Result
The class of polynomials computed by determinant of symbolic matrix with rank 1 constraint is \mathbb{C}-closed under approximation.

The \rightarrow

$$
\overline{D E T 1}=D E T 1
$$

Moreover, $\overline{\operatorname{DET1}}_{k n}=D E T 1_{k, n}$ if $A_{0}=0$
otherwise $\overline{\operatorname{DET}}_{k, n} \subseteq D E T 1_{k+1, n}$

Another Form of DET1

$$
\begin{gathered}
A=A_{1} x_{1}+\ldots A_{i x_{i}}+\ldots A_{n} x_{n}, A_{i} \in \mathbb{F}^{8 \times x} \& r k\left(A_{i}\right)=1 \\
A_{i}=\vec{u}_{i} \vec{v}_{i}^{\top}, \vec{u}_{i}, \vec{v}_{i} \in \mathbb{F}^{\gamma \times 1}
\end{gathered}
$$

Another Form of DET1

$$
\begin{aligned}
& A=A_{1} x_{1}+\ldots A_{i} x_{i}+\ldots A_{n} x_{n}, A_{i} \in \mathbb{F}_{8}^{8 x \gamma} \& r k\left(A_{i}\right)=1 \\
& A_{i}=\vec{u}_{i} \vec{v}_{i}^{\top}, \quad \vec{u}_{i}, \vec{v}_{i} \in \mathbb{F}^{\gamma \times 1} \\
& U=\left[\begin{array}{cccc}
\hat{\vec{u}}_{1} & \ldots \hat{\vec{u}}_{i} & \ldots \hat{\vec{u}}_{n} \\
\downarrow & \downarrow & \downarrow
\end{array}\right] \quad, \quad V=\left[\begin{array}{cccc}
\hat{\vec{v}}_{1} & \ldots & \hat{\vec{v}}_{i} & \ldots \\
\downarrow & \ldots & \hat{\vec{v}}_{n} \\
\downarrow & \downarrow & \downarrow
\end{array}\right]
\end{aligned}
$$

Another Form of DET1

$$
\begin{aligned}
& A=A_{1} x_{1}+\ldots A_{i} x_{i}+\ldots A_{n} x_{n}, A_{i} \in \mathbb{F}_{\&}^{\square x x} \quad r k\left(A_{i}\right)=1 \\
& A_{i}=\vec{u}_{i} \vec{v}_{i}^{\top}, \vec{u}_{i}, \vec{v}_{i} \in \mathbb{F}^{\times \times 1}
\end{aligned}
$$

Ow: $\quad A=U X V^{\top}$ where $X=\operatorname{Diag}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Another Form of DET1

$$
\begin{aligned}
& A=A_{1} x_{1}+\ldots A_{i} x_{i}+\ldots A_{n} x_{n}, A_{i} \in \mathbb{F}_{\&}^{\pi x x} \quad r k\left(A_{i}\right)=1 \\
& A_{i}=\vec{u}_{i} \vec{v}_{i}^{\top}, \vec{u}_{i}, \vec{v}_{i} \in \mathbb{F}^{\top \times 1} \\
& U=\left[\begin{array}{ccc}
\hat{\vec{u}}_{1} & \ldots & \hat{\vec{u}}_{i} \\
\vdots & \ldots \\
\vdots & \hat{\vec{u}}_{n} \\
\vdots
\end{array}\right] \quad, \quad V=\left[\begin{array}{ccc}
\hat{\vec{v}}_{1} & \ldots & \hat{\vec{v}}_{i} \\
\vdots & \ldots \\
\vdots & \ldots & \hat{\vec{v}}_{n} \\
\vdots
\end{array}\right]
\end{aligned}
$$

Obs: $A=U X V^{\top}$ where $X=\operatorname{Diag}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Hence, $\sum_{i=1}^{n} A_{i} x_{i}=U X V^{\top}$

Closure of $\operatorname{det}\left(U X V^{\top}\right)$

$$
A=U X V^{\top} \text { where } U, V \in \mathbb{C}(\epsilon)^{k \times n}
$$

Closure of $\operatorname{det}\left(U X V^{\top}\right)$

$$
\begin{aligned}
& A=U X V^{\top} \quad \text { where } U, V \in \mathbb{C}(\epsilon)^{k \times n} \\
& \text { For } S=\left\{i_{1}, i_{2}, \ldots i_{k}\right\}, U_{s}=\left(\vec{u}_{i_{1}}, \vec{u}_{i_{2}} \ldots \vec{u}_{i_{k}}\right), x_{s}=x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}}
\end{aligned}
$$

Closure of $\operatorname{det}\left(U X V^{\top}\right)$

$$
\begin{aligned}
& A=U X V^{\top} \quad \text { where } U, V \in \mathbb{C}(\epsilon)^{k \times n} \\
& \text { For } S=\left\{i_{1}, i_{2}, \ldots i_{k}\right\}, U_{s}=\left(\vec{u}_{i_{1}}, \vec{u}_{i_{2}} \ldots \vec{u}_{i_{k}}\right), x_{s}=x_{i x_{i_{2}} \ldots x_{i_{k}}} \\
& \left.\operatorname{det}(A)=\operatorname{det}\left(U X V^{\top}\right)=\sum_{s \in\left(\left[\begin{array}{l}
(n) \\
k
\end{array}\right)\right.} \operatorname{det}\left(U_{s}\right) \cdot \operatorname{det}\left(V_{s}\right) x_{s} \quad \text { [Cauchy-Binet }\right]
\end{aligned}
$$

Closure of $\operatorname{det}\left(U X V^{\top}\right)$

$$
\begin{gathered}
A=U X V^{\top} \quad \text { where } U, V \in \mathbb{C}(\epsilon)^{k \times n} \\
\text { For } S=\left\{i_{1}, i_{2}, \ldots i_{k}\right\}, U_{s}=\left(\vec{u}_{i_{1}}, \vec{u}_{i_{2}} \ldots \vec{u}_{i_{k}}\right), x_{s}=x_{i} x_{i_{2}, \ldots i_{i_{k}}} \\
\operatorname{det}(A)=\operatorname{det}\left(U X V^{\top}\right)=\sum_{s \in\binom{n}{k}} \operatorname{det}\left(U_{s}\right) \cdot \operatorname{det}\left(V_{s}\right) x_{s} \quad[\text { Cauchy-Binet }]
\end{gathered}
$$

Tho
(Restated)
Given $U, V \in \mathbb{C}(\epsilon)^{K \times n}$ sit. $\lim _{\epsilon \rightarrow 0} \operatorname{det}\left(U_{s}\right) \cdot \operatorname{det}\left(V_{s}\right)$ is defined $\forall s \in\binom{[n]}{k}$, then $\exists \tilde{U}, \tilde{V} \in \mathbb{C}^{k \times n}$ st. $\forall S \in\binom{[n]}{k}$

$$
\lim _{\epsilon \rightarrow 0} \operatorname{det}\left(U_{s}\right) \operatorname{det}\left(V_{s}\right)=\operatorname{det}\left(\hat{U}_{s}\right) \operatorname{det}\left(\widehat{V}_{s}\right)
$$

Closure of $\operatorname{det}\left(U X V^{\top}\right)$

$$
\begin{aligned}
& A=U X V^{\top} \quad \text { where } U, V \in \mathbb{C}(\epsilon)^{k \times n} \\
& \text { For } S=\left\{i_{1}, i_{2}, \ldots i_{k}\right\}, U s=\left(\vec{u}_{i_{1}}, \vec{u}_{i_{2}}, \ldots \vec{u}_{i_{k}}\right), x_{s}=x_{i} x_{i_{2}} \ldots x_{i_{k}} \\
& \operatorname{det}(A)=\operatorname{det}\left(U X V^{\top}\right)=\sum_{s \in\left(l_{k}^{\left(m_{k}\right)}\right)} \operatorname{det}\left(U_{s}\right) \cdot \operatorname{det}\left(V_{s}\right) x_{s} \quad[\text { Canchy-Binet }]
\end{aligned}
$$

Tho
(Restated)
Given $U, V \in \mathbb{C}(\epsilon)^{K \times n}$ sit. $\lim _{\epsilon \rightarrow 0} \operatorname{det}\left(U_{s}\right) \cdot \operatorname{det}\left(V_{s}\right)$ is defined $\forall s \in\binom{[n]}{k}$, then $\exists \tilde{U}, \tilde{V} \in \mathbb{C}^{k \times n}$ st. $\forall S \in\binom{[n]}{k}$

$$
\lim _{\epsilon \rightarrow 0} \operatorname{det}\left(U_{s}\right) \operatorname{det}\left(V_{s}\right)=\operatorname{det}\left(\hat{U}_{s}\right) \operatorname{det}\left(\widehat{V}_{s}\right)
$$

Equivalently,
$G V^{2}=\left\{\left(\operatorname{det}\left(U_{s}\right) \cdot \operatorname{det}\left(V_{s}\right)\right)_{s t\left(\begin{array}{l}\binom{n n}{k}\end{array}\right.}: U, V \in \mathbb{C}^{k \times n}\right\}$ is euclidean closed.

Grassmanian Variety
$\left\{\left(\operatorname{det}\left(U_{s}\right)\right)_{s \in\binom{n-n}{k}}: U \in \mathbb{C}^{k \times n}\right\}$ is a variety characterized by Grassmannian-Plicker relations.

Grassmanian Variety
 Grassmannian-Pliicker relations.
Equivalently,
Given $U \in \mathbb{C}(\epsilon)^{k \times n}$ with $\lim _{\epsilon \rightarrow 0} \operatorname{det}\left(U_{s}\right)$ is defined $\forall S \in\binom{[n]}{k}$, then $\exists \tilde{U} \in \mathbb{C}^{k \times n}$ with $\lim _{\epsilon \rightarrow 0} \operatorname{det}\left(U_{s}\right)=\operatorname{det}\left(\hat{U}_{s}\right)$

Grassmanian Variety
$\left\{\left(\operatorname{det}\left(U_{s}\right)\right)_{S_{\in}\binom{n n}{k}}: U \in \mathbb{C}^{k \times n}\right\}$ is a variety characterized by Grassmannian-Pliicker relations.
Equivalently,
Given $U \in \mathbb{C}(\epsilon)^{k \times n}$ with $\lim _{\epsilon \rightarrow 0} \operatorname{det}\left(U_{S}\right)$ is defined $\forall S \in\binom{[n]}{k}$, then $\exists \tilde{U} \in \mathbb{C}^{k \times n}$ with $\quad \lim _{G \rightarrow 0} \operatorname{det}\left(U_{s}\right)=\operatorname{det}\left(\tilde{U}_{s}\right)$
Does this directly imply our result?

Grassmanian Variety
$\left\{\left(\operatorname{det}\left(U_{s}\right)\right)_{S_{\in}\binom{n n}{k}}: U \in \mathbb{C}^{k \times n}\right\}$ is a variety characterized by Grassmannian-Plicker relations.
Equivalently,
Given $U \in \mathbb{C}(\epsilon)^{k \times n}$ with $\lim _{\epsilon \rightarrow 0} \operatorname{det}\left(U_{S}\right)$ is defined $\forall S \in\binom{[n]}{k}$, then $\exists \tilde{U} \in \mathbb{C}^{k \times n}$ with $\quad \lim _{\epsilon \rightarrow 0} \operatorname{det}\left(U_{s}\right)=\operatorname{det}\left(\tilde{U}_{s}\right)$
Does this directly imply our result? No

Grassmanian Variety
$\left\{\left(\operatorname{det}\left(U_{S}\right)\right)_{s \in\binom{n n]}{k}}: U \in \mathbb{C}^{k \times n}\right\}$ is a variety characterized by Grassmannian- Flicker relations.
Equivalently,
Given $U \in \mathbb{C}(\epsilon)^{k \times n}$ with $\lim _{\epsilon \rightarrow 0} \operatorname{dot}\left(U_{s}\right)$ is defined $\forall S \in\binom{[n]}{k}$, then

$$
\exists \tilde{U} \in \mathbb{C}^{k n n} \text { with } \quad \lim _{G \rightarrow 0} \operatorname{det}\left(U_{s}\right)=\operatorname{det}\left(\hat{U}_{s}\right)
$$

Does this directly imply our result? No
Example

Proof Idea
Using results of Murota'96, we show
Lemma: Given $U, V \in \mathbb{C}(\epsilon)^{\kappa \pi n}$ st. $\lim _{\epsilon \rightarrow 0} \operatorname{det}\left(U_{s}\right) \operatorname{det}\left(V_{s}\right)$ is defined $\forall S \in\binom{[n]}{k}$, then $\exists \hat{U}, \hat{V} \in \mathbb{C}(\varepsilon)^{k \times n}$ s.t. $\forall S \in\binom{[n]}{k}$,
$\lim _{\epsilon \rightarrow 0} \operatorname{det}\left(\hat{U}_{s}\right)$ and $\lim _{\epsilon \rightarrow 0} \operatorname{det}\left(\hat{V}_{s}\right)$ are $\operatorname{defined}$ and $\operatorname{det}\left(\hat{U}_{s}\right) \operatorname{det}\left(\hat{V}_{s}\right)=\operatorname{det}\left(U_{s}\right) \cdot \operatorname{det}\left(V_{s}\right)$

Proof Idea
Using results of Murota' 96 , we show
Lemma: Given $U, V \in \mathbb{C}(\epsilon)^{k \times n}$ s.t. $\lim _{\epsilon \rightarrow 0} \operatorname{det}\left(U_{S}\right) \operatorname{det}\left(V_{S}\right)$ is defined $\forall S \in\binom{[n]}{k}$,

$$
\text { then } \exists \hat{U}, \hat{V} \in \mathbb{C}(\epsilon)^{k \times n} \text { s.t. } \forall S \in\binom{[n]}{k}
$$

$\lim _{\epsilon \rightarrow 0} \operatorname{det}\left(\hat{U}_{S}\right)$ and $\lim _{\epsilon \rightarrow 0} \operatorname{det}\left(\hat{V}_{S}\right)$ are defined and $\operatorname{det}\left(\hat{U}_{S}\right) \operatorname{det}\left(\hat{V}_{s}\right)=\operatorname{det}\left(U_{S}\right) \cdot \operatorname{det}\left(V_{S}\right)$
Example:

$$
\begin{aligned}
& \hat{U}=\left(\begin{array}{ccc}
\frac{1}{l} / \epsilon_{1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 0 & \epsilon \\
1 / \epsilon & 0 & 1 & \epsilon
\end{array}\right)\left(\begin{array}{lll}
\epsilon & & \\
\cdots & \epsilon^{2} & \\
& & \\
& & \epsilon
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & \epsilon^{2}
\end{array}\right)
\end{aligned}
$$

Proof Idea
Using results of Murota'96, we show
Lemma: Given $U, V \in \mathbb{C}(\epsilon)^{k \times n}$ s.t. $\lim _{\epsilon \rightarrow 0} \operatorname{det}\left(U_{s}\right) \operatorname{det}\left(V_{s}\right)$ is defined $\forall S \in\binom{[n]}{k}$,

$$
\text { then } \exists \hat{U}, \hat{V} \in \mathbb{C}(\epsilon)^{k \times n} \text { s.t. } \forall S \in\binom{[n]}{k}
$$

$\lim _{\epsilon \rightarrow 0} \operatorname{det}\left(\hat{U}_{s}\right)$ and $\lim _{\epsilon \rightarrow 0} \operatorname{det}\left(\hat{V}_{s}\right)$ are $\operatorname{defined}$ and $\operatorname{det}\left(\hat{U}_{s}\right) \operatorname{det}\left(\hat{V}_{s}\right)=\operatorname{det}\left(U_{s}\right) \cdot \operatorname{det}\left(V_{s}\right)$
Example:
(Revisit)

$$
\begin{aligned}
& \hat{U}=\left(\begin{array}{cc}
1 / \epsilon^{2} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cccc}
0 & 1 & 0 & \epsilon \\
1 / \epsilon & 0 & 1 & \epsilon
\end{array}\right)\left(\begin{array}{lll}
\epsilon & \epsilon^{2} & \\
& & 1 \\
& & \epsilon
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & \epsilon^{2}
\end{array}\right) \\
& \hat{V}=\left(\begin{array}{ll}
\epsilon^{2} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & \epsilon & 0 & 0 \\
0 & 0 & 1 / \epsilon & 1
\end{array}\right)\left(\begin{array}{cccc}
1 / \epsilon & & \\
& 1 / \epsilon^{2} & \\
& & 1 / \epsilon
\end{array}\right)=\left(\begin{array}{cccc}
\epsilon & \epsilon & 0 & 0 \\
0 & 0 & 1 / \epsilon & 1 / \epsilon
\end{array}\right)
\end{aligned}
$$

There exist $c \in \mathbb{Z}$ and $\alpha \in \mathbb{Z}^{n}$ s.t. multiplying isth column of $U /{ }_{V}$ by $\epsilon^{\alpha_{i}} / \epsilon^{-\alpha_{i}}$ and any row of U / V by $\epsilon^{c} / \epsilon^{-c}$, we get \hat{U}, \hat{V} s.t. $\lim _{\epsilon \rightarrow 0} \operatorname{det}\left(\hat{U}_{s}\right)$ and $\lim _{\epsilon \rightarrow 0}\left(\hat{V}_{s}\right)$ are defined.

Future Work

* Find set of Characterizing equations for DET1 class.

Future Work

* Find set of Characterizing equations for DET1 class.
* For $c \in \mathbb{Z}^{+}$, we can define

$$
\operatorname{DET} c_{k, n}=\left\{\operatorname{det}\left(A_{0}+\sum A_{i} x_{i}\right): A_{i} \in \mathbb{C}^{k \times n}, r k\left(A_{i}\right) \leq c\right\}
$$

and $D E T_{c_{n}} \rightarrow k$ is poly (n)
Is $\overline{D^{D} T_{c_{n}}}=D E T_{c_{n}}$?

Thank You!

