Complete Decomposition of Symmetric Tensors in Linear Time and Polylogarithmic Precision

Subhayan Saha
(joint work with Pascal Koiran)

WACT 2023

LIP, ENS Lyon

Outline

(1) Problem Statement
(2) Results
(3) Jennrich's Algorithm

4 Some ingredients for the proof
Making modifications
Algorithm for change of basis
Diagonalization

Outline

(1) Problem Statement
(2) Results
(3) Jennrich's Algorithm

4 Some ingredients for the proof Making modifications Algorithm for change of basis Diagonalization

Symmetric Tensor Decomposition

$T \in \mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ - symmetric tensor, order-3

- Can be viewed as a 3-dimensional array $\left(T_{i j k}\right)_{i, j, k \in[n]}$
- Invariant under permutations of indices
- 3-dimensional generalization of symmetric matrices

Symmetric Tensor Decomposition

$T \in \mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ - symmetric tensor, order-3

- Can be viewed as a 3-dimensional array $\left(T_{i j k}\right)_{i, j, k \in[n]}$
- Invariant under permutations of indices
- 3-dimensional generalization of symmetric matrices

Look at decompositions of the form:

$$
\begin{equation*}
T=\sum_{i=1}^{r} u_{i} \otimes u_{i} \otimes u_{i} \tag{1}
\end{equation*}
$$

where $u_{i} \in \mathbb{C}^{n}$.

- Smallest value of r-symmetric tensor rank of T
- NP-hard to compute (Shitov, 2016)

Symmetric Tensor Decomposition

We still look at decompositions of the form:

$$
T=\sum_{i=1}^{r} u_{i} \otimes u_{i} \otimes u_{i}
$$

where $u_{i} \in \mathbb{C}^{n}$.

Symmetric Tensor Decomposition

We still look at decompositions of the form:

$$
T=\sum_{i=1}^{r} u_{i} \otimes u_{i} \otimes u_{i}
$$

where $u_{i} \in \mathbb{C}^{n}$.

Impose two additional conditions:

(1) u_{i} 's are linearly independent.

- Decomposition unique (up to permutation and scaling by cube roots of unity), if it exists.
- $r \leq n$ - undercomplete decompositions
(2) $r=n$-complete decompositions

Symmetric Tensor Decomposition

We still look at decompositions of the form:

$$
T=\sum_{i=1}^{r} u_{i} \otimes u_{i} \otimes u_{i}
$$

where $u_{i} \in \mathbb{C}^{n}$.

Impose two additional conditions:

(1) u_{i} 's are linearly independent.

- Decomposition unique (up to permutation and scaling by cube roots of unity), if it exists.
- $r \leq n$ - undercomplete decompositions
(2) $r=n$-complete decompositions

Definition: Tensor T diagonalisable if it satisfies these conditions. Matrix U - rows u_{1}, \ldots, u_{n} diagonalises T

Model of Computation

Finite precision arithmetic:

- Machine precision \mathbf{u} - function of input size and desired accuracy.
- Input $x \in \mathbb{C}$ is stored as $f(x)=(1+\Delta) x$ for some adversarially chosen $\Delta \in \mathbb{C}$ where $|\Delta| \leq u$
- Bit lengths of numbers stored - remain fixed at $\log \left(\frac{1}{u}\right)$.

Model of Computation

Finite precision arithmetic:

- Machine precision \mathbf{u} - function of input size and desired accuracy.
- Input $x \in \mathbb{C}$ is stored as $\mathrm{fl}(x)=(1+\Delta) x$ for some adversarially chosen $\Delta \in \mathbb{C}$ where $|\Delta| \leq u$
- Bit lengths of numbers stored - remain fixed at $\log \left(\frac{1}{u}\right)$.
- Each arithmetic operation $* \in\{+,-, \times, \div\}$ is guaranteed to yield an output satisfying

$$
\begin{equation*}
\mathrm{fl}(x * y)=(x * y)(1+\Delta) \text { where }|\Delta| \leq u \tag{2}
\end{equation*}
$$

Algorithmic problem

Approximate tensor decomposition:
Input: Diagonalisable tensor $T=\sum_{i=1}^{n} u_{i}^{\otimes 3}, u_{i}$'s linearly independent, accuracy parameter ϵ
Goal: Find linearly independent vectors $u_{1}^{\prime}, \ldots, u_{n}^{\prime}$ such that u_{i}^{\prime} are at $\leq \epsilon$-distance from u_{i}.

Forward approximation in the sense of numerical analysis - output solution close to the actual output.

Outline

(1) Problem Statement

(2) Results

(3) Jennrich's Algorithm

4 Some ingredients for the proof Making modifications Algorithm for change of basis Diagonalization

Condition Number

Matrix $A \in \mathbb{C}^{m \times n}-\|A\|_{F}=\sqrt{\sum_{i \in[m], j \in[n]}\left|A_{i, j}\right|^{2}}$ - Frobenius norm.

- A-invertible, $\kappa_{F}(A)=\|A\|_{F}^{2}+\left\|A^{-1}\right\|_{F}^{2}$.
- Related to usual notion of condition number

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

Condition Number

Matrix $A \in \mathbb{C}^{m \times n}-\|A\|_{F}=\sqrt{\sum_{i \in[m], j \in[n]}\left|A_{i, j}\right|^{2}}$ - Frobenius norm.

- A-invertible, $\kappa_{F}(A)=\|A\|_{F}^{2}+\left\|A^{-1}\right\|_{F}^{2}$.
- Related to usual notion of condition number

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

Definition: T-diagonalisable tensor over \mathbb{C}, U diagonalises T. Condition number of $T(\kappa(T))=\kappa_{F}(U)$

Lemma: $\quad T$-diagonalisable tensor. $\kappa(T)$ is well-defined (does not depend on choice of U).

Results

Input: diagonalisable tensor T, desired accuracy parameter ϵ and estimate $B \geq \kappa(T)$
Output: ϵ-approximate solution to the tensor decomposition problem for T
Number of arithmetic operations: $O\left(n^{3}+T_{M M}(n) \log ^{2}\left(\frac{n B}{\epsilon}\right)\right)$ Bits of precision: poly- $\log \left(n, B, \frac{1}{\epsilon}\right)$ Probability: $1-\frac{1}{8 n}$

Results

Input: diagonalisable tensor T, desired accuracy parameter ϵ and estimate $B \geq \kappa(T)$
Output: ϵ-approximate solution to the tensor decomposition problem for T
Number of arithmetic operations: $O\left(n^{3}+T_{M M}(n) \log ^{2}\left(\frac{n B}{\epsilon}\right)\right)$ Bits of precision: poly- $\log \left(n, B, \frac{1}{\epsilon}\right)$ Probability: $1-\frac{1}{8 n}$

Important conclusions:

- Bits of precision required $=$ polylogarithmic in n, B and $\frac{1}{\epsilon}$.
- Running time $=O\left(n^{3}\right)$ for all $\epsilon=\frac{1}{\operatorname{poly(n)}}$, i.e., linear in the size of the input tensor (first such algorithm)
- Can provide inverse exponential accuracy, i.e., polynomial time even when $\epsilon=\frac{1}{\exp (n)}$.

Related work

- Optimized version of Jennrich's algorithm/simultaneous diagonalisation.

Related work

- Optimized version of Jennrich's algorithm/simultaneous diagonalisation.
- (Bhaskara et al, 2014)
- algorithm runs in polynomial time in the exact arithmetic computation model (even when input has some noise)
- Requires that the diagonalisation operation be done exactly

Related work

- Optimized version of Jennrich's algorithm/simultaneous diagonalisation.
- (Bhaskara et al, 2014)
- algorithm runs in polynomial time in the exact arithmetic computation model (even when input has some noise)
- Requires that the diagonalisation operation be done exactly
- (Beltrán et al, 2019)
- "pencil-based algorithms" for tensor decomposition are numerically unstable
- We can escape this result because our algorithm is randomized.

Outline

(1) Problem Statement

(2) Results

(3) Jennrich's Algorithm

4 Some ingredients for the proof Making modifications Algorithm for change of basis Diagonalization

Slices

Order-3 tensor $T \in \mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ can be "cut" into n slices $T_{1}, \ldots, T_{n} \in M_{n}(\mathbb{K})$ where

$$
\left(T_{k}\right)_{i, j}=\left(T_{i j k}\right)_{1 \leq i, j \leq n} .
$$

Note: For a symmetric tensor, each slice is a symmetric matrix of size n.

Slices

Order-3 tensor $T \in \mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ can be "cut" into n slices $T_{1}, \ldots, T_{n} \in M_{n}(\mathbb{K})$ where

$$
\left(T_{k}\right)_{i, j}=\left(T_{i j k}\right)_{1 \leq i, j \leq n} .
$$

Note: For a symmetric tensor, each slice is a symmetric matrix of size n.
Let's look at some examples of slices:
If

$$
T=\sum_{i=1}^{n} e_{i}^{\otimes 3}
$$

then

$$
\left(T_{i}\right)_{j, k}=1 \text { if } i=j=k \text { and } 0 \text { otherwise. }
$$

Jennrich's Algorithm (Symmetric version)

T-diagonalisable tensor, T_{1}, \ldots, T_{n}-slices of T
(i) Pick vectors $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$ at random
(ii) Compute $T^{(a)}=\sum_{i=1}^{n} a_{i} T_{i}$ and $T^{(b)}=\sum_{i=1}^{n} b_{i} T_{i}$
(iii) Diagonalise $\left(T^{(a)}\right)^{-1} T^{(b)}=V D V^{-1}$.
(iv) Let w_{1}, \ldots, w_{n} be the rows of V^{-1}.
(v) Solve for α_{i} in $T=\sum_{i=1}^{n} \alpha_{i} w_{i}^{\otimes 3}$
(vi) Output $\left(\alpha_{1}\right)^{\frac{1}{3}} w_{1}, \ldots,\left(\alpha_{n}\right)^{\frac{1}{3}} w_{n}$.

Why does it work?

Let $T=\sum_{i=1}^{n} u_{i}^{\otimes 3}$. U-rows u_{1}, \ldots, u_{n}

Why does it work?

Let $T=\sum_{i=1}^{n} u_{i}^{\otimes 3} . U$-rows u_{1}, \ldots, u_{n}

- Structure of slices: $T_{i}=U^{T}\left(\begin{array}{lll}u_{1 i} & & \\ & \ddots & \\ & & u_{n, i}\end{array}\right) U$.

Why does it work?

Let $T=\sum_{i=1}^{n} u_{i}^{\otimes 3}$. U-rows u_{1}, \ldots, u_{n}

- Structure of slices: $T_{i}=U^{T}\left(\begin{array}{lll}u_{1 i} & & \\ & \ddots & \\ & & u_{n, i}\end{array}\right) U$.
- Then

$$
T^{(a)}=U^{T}\left(\begin{array}{lll}
\left\langle a, u_{1}\right\rangle & & \\
& \ddots & \\
& & \left\langle a, u_{n}\right\rangle
\end{array}\right) U
$$

Why does it work?

Let $T=\sum_{i=1}^{n} u_{i}^{\otimes 3}$. U-rows u_{1}, \ldots, u_{n}

- Structure of slices: $T_{i}=U^{T}\left(\begin{array}{lll}u_{1 i} & & \\ & \ddots & \\ & & u_{n, i}\end{array}\right) U$.
- Then

$$
T^{(a)}=U^{T}\left(\begin{array}{ccc}
\left\langle a, u_{1}\right\rangle & & \\
& \ddots & \\
& & \left\langle a, u_{n}\right\rangle
\end{array}\right) U
$$

- Columns of U^{-1} are eigenvectors of $\left(T^{(a)}\right)^{-1} T^{(b)}$.

Eigenvalues of $\left(T^{(a)}\right)^{-1} T^{(b)}$ distinct whp.

Outline

(1) Problem Statement

(2) Results
(3) Jennrich's Algorithm

4 Some ingredients for the proof
Making modifications
Algorithm for change of basis
Diagonalization

Looking at Step 5

Step 3: Diagonalisation algorithm on $\left(T^{(a)}\right)^{-1} T^{(b)}=V M V^{-1}$ $V=U^{-1} \Lambda, \Lambda=\operatorname{diag}\left(k_{1}, \ldots, k_{n}\right)$ - since eigenvalues distinct Need to find scaling factors k_{i} in Step 5.

Looking at Step 5

Step 3: Diagonalisation algorithm on $\left(T^{(a)}\right)^{-1} T^{(b)}=V M V^{-1}$ $V=U^{-1} \Lambda, \Lambda=\operatorname{diag}\left(k_{1}, \ldots, k_{n}\right)$ - since eigenvalues distinct Need to find scaling factors k_{i} in Step 5.

- Usual idea: Solve a system of linear equations
- System has n variables, n^{3} equations - cannot achieve $O\left(n^{3}\right)$ even in exact arithmetic
- Need a numerically stable algorithm as well

Looking at Step 5

Step 3: Diagonalisation algorithm on $\left(T^{(a)}\right)^{-1} T^{(b)}=V M V^{-1}$ $V=U^{-1} \Lambda, \Lambda=\operatorname{diag}\left(k_{1}, \ldots, k_{n}\right)$ - since eigenvalues distinct
Need to find scaling factors k_{i} in Step 5.

- Usual idea: Solve a system of linear equations
- System has n variables, n^{3} equations - cannot achieve $O\left(n^{3}\right)$ even in exact arithmetic
- Need a numerically stable algorithm as well

Our idea:

- Perform "change of basis" of T by matrix V, Compute the traces of the slices of new tensor
- Requires $O\left(n^{3}\right)$ arithmetic operations and is numerically stable.

Change of basis

Change of basis operation: Apply map $A \otimes A \otimes A$ to a tensor T. $\left(A \in M_{n}(\mathbb{C})\right)$ - apply A to each of the 3 components/modes of the input tensor.

Change of basis

Change of basis operation: Apply map $A \otimes A \otimes A$ to a tensor T. $\left(A \in M_{n}(\mathbb{C})\right)$ - apply A to each of the 3 components/modes of the input tensor.

- $T=\sum_{i=1}^{r} u_{i}^{\otimes 3} \Longrightarrow(A \otimes A \otimes A) \cdot T=\sum_{i=1}^{r}\left(A^{T} u_{i}\right)^{\otimes 3}$.
- Via polynomial-tensor equivalence: Can be thought of as a change of variables, $g(x)=f(A x)$.

Change of basis

Change of basis operation: Apply map $A \otimes A \otimes A$ to a tensor T. $\left(A \in M_{n}(\mathbb{C})\right)$ - apply A to each of the 3 components/modes of the input tensor.

$$
\text { - } T=\sum_{i=1}^{r} u_{i}^{\otimes 3} \Longrightarrow(A \otimes A \otimes A) \cdot T=\sum_{i=1}^{r}\left(A^{T} u_{i}\right)^{\otimes 3} \text {. }
$$

- Via polynomial-tensor equivalence: Can be thought of as a change of variables, $g(x)=f(A x)$.
$D=\sum_{i=1}^{n} e_{i}^{\otimes 3}$ - diagonal tensor. T - diagonalisable tensor. Then $T=(U \otimes U \otimes U) . D$ for $U \in G L_{n}(\mathbb{C})$

Modified Algorithm

Replaced Step 5:
The algorithm proceeds as follows.
(i) Pick vectors $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$ at random
(ii) Compute $T^{(a)}=\sum_{i=1}^{n} a_{i} T_{i}$ and $T^{(b)}=\sum_{i=1}^{n} b_{i} T_{i}$
(iii) Diagonalise $\left(T^{(a)}\right)^{-1} T^{(b)}=V D V^{-1}$.
(iv) Let w_{1}, \ldots, w_{n} be the rows of V^{-1}.
(v) Let $T^{\prime}=(V \otimes V \otimes V) . T$. Let $T_{1}^{\prime}, \ldots, T_{n}^{\prime}$ be the slices of T^{\prime}. Define $\alpha_{i}=\operatorname{Tr}\left(T_{i}^{\prime}\right)$.
(vi) Output $\left(\alpha_{1}\right)^{\frac{1}{3}} w_{1}, \ldots,\left(\alpha_{n}\right)^{\frac{1}{3}} w_{n}$.

Input tensor $T=\sum_{t=1}^{n} u_{t}^{\otimes 3}$. U-rows u_{1}, \ldots, u_{n}.
Step (iii) outputs $V=U^{-1} \Lambda$ where $\Lambda=\operatorname{diag}\left(k_{1}, \ldots, k_{n}\right), k_{i} \neq 0$.
Recall that we want to find the scaling factors k_{i}.
Recall that for diagonal tensor D

$$
U \text { diagonalises } T \Longrightarrow T=(U \otimes U \otimes U) . D
$$

Input tensor $T=\sum_{t=1}^{n} u_{t}^{\otimes 3}$. U-rows u_{1}, \ldots, u_{n}.
Step (iii) outputs $V=U^{-1} \Lambda$ where $\Lambda=\operatorname{diag}\left(k_{1}, \ldots, k_{n}\right), k_{i} \neq 0$.
Recall that we want to find the scaling factors k_{i}.
Recall that for diagonal tensor D

$$
U \text { diagonalises } T \Longrightarrow T=(U \otimes U \otimes U) \cdot D
$$

$$
T^{\prime}=\left(U^{-1} \Lambda \otimes U^{-1} \Lambda \otimes U^{-1} \Lambda\right) \cdot T=(\Lambda \otimes \Lambda \otimes \Lambda) \cdot D
$$

So $\operatorname{Tr}\left(T_{i}^{\prime}\right)=k_{i}^{3}$.

Change of basis

Algorithmic Problem:

Input: $\quad V \in M_{n}(\mathbb{C})$, symmetric tensor $T \in \mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}$
Output: $\operatorname{Tr}\left(S_{1}\right), \ldots, \operatorname{Tr}\left(S_{n}\right)$ where S_{1}, \ldots, S_{n}-slices of $S=(V \otimes V \otimes V) . T$, We give an $O\left(n^{3}\right)$ algorithm for this problem.

Idea:

Don't need to compute entire tensor after change of basis - too expensive

Idea:

Don't need to compute entire tensor after change of basis - too expensive

Lemma

Let $S=(V \otimes V \otimes V) . T, S_{1}, \ldots, S_{n}$-slices of S. Then

$$
S_{i}=V^{T} D_{i} V \text { where } D_{i}=\sum_{m=1}^{n} v_{m, i} T_{m}
$$

Idea:

Don't need to compute entire tensor after change of basis - too expensive

Lemma

Let $S=(V \otimes V \otimes V) . T, S_{1}, \ldots, S_{n}$-slices of S. Then

$$
S_{i}=V^{T} D_{i} V \text { where } D_{i}=\sum_{m=1}^{n} v_{m, i} T_{m}
$$

$$
\begin{aligned}
\operatorname{Tr}\left(S_{i}\right)=\operatorname{Tr}\left(V^{T} D_{i} V\right)=\operatorname{Tr}\left(V^{T} V D_{i}\right) & =\operatorname{Tr}\left(V^{T} V\left(\sum_{m=1}^{n} v_{m, i} T_{m}\right)\right) \\
& =\sum_{m=1}^{n} v_{m i} \operatorname{Tr}\left(V^{T} V T_{m}\right)
\end{aligned}
$$

Eigenvalue gaps

A-diagonalisable matrix, $\lambda_{1}, \ldots, \lambda_{n}$-eigenvalues of A. Then

$$
\operatorname{gap}(A):=\min _{i \neq j}\left|\lambda_{i}-\lambda_{j}\right|
$$

Step 3: Diagonalise $D:=\left(T^{(a)}\right)^{-1} T^{(b)}$
Use fast and numerically stable diagonalisation algorithm from [Banks et al'20]

Lower bounds on $\operatorname{gap}(D)$ required for numerically stable diagonalisation.
$T=\sum_{i=1}^{n} u_{i}^{\otimes 3}, U \in M_{n}(\mathbb{C})$, rows $u_{1}, \ldots, u_{n}, T_{1}, . ., T_{n}$-slices of T

Recall

$$
T^{(a)}=U^{T}\left(\begin{array}{ccc}
\left\langle a, u_{1}\right\rangle & & \\
& \ddots & \\
& & \left\langle a, u_{n}\right\rangle
\end{array}\right) U
$$

$$
\operatorname{gap}(D)=\min _{i \neq j}\left|\frac{\left\langle b, u_{i}\right\rangle}{\left\langle a, u_{i}\right\rangle}-\frac{\left\langle b, u_{j}\right\rangle}{\left\langle a, u_{j}\right\rangle}\right|=\min _{i \neq j}\left|\frac{\left\langle b, u_{i}\right\rangle\left\langle a, u_{j}\right\rangle-\left\langle b, u_{j}\right\rangle\left\langle a, u_{i}\right\rangle}{\left\langle a, u_{i}\right\rangle\left\langle a, u_{j}\right\rangle}\right|
$$

Looking at polynomials

$$
P^{k l}(\mathbf{x}, \mathbf{y})=\sum_{i, j \in[n]} p_{i j}^{k l} x_{i} y_{j}
$$

where coefficients $p_{i j}^{k l}=u_{i k} u_{j l}-u_{i l} u_{j k}$

$$
\left|P^{k l}(a, b)\right|=\left|\left\langle b, u_{i}\right\rangle\left\langle a, u_{j}\right\rangle-\left\langle b, u_{j}\right\rangle\left\langle a, u_{i}\right\rangle\right|
$$

lower bds for $P^{k l}(a, b) \forall k, I \in[n] \Longrightarrow$ lower bds for gap (A)

Probabilistic analysis

- Quadratic polynomial $P^{k l}$ emerges out of analysis for gap (D)
- Need to show that for random choices of $a, b, P^{k l}(a, b)$ is bounded far away from 0 with high probability.

Probabilistic analysis

- Quadratic polynomial $P^{k l}$ emerges out of analysis for gap (D)
- Need to show that for random choices of $a, b, P^{k l}(a, b)$ is bounded far away from 0 with high probability.
We follow a two-step process:
- First, we assume a and b are drawn from the uniform distribution on the hypercube $[-1,1)^{n}$. Using Carbery-Wright inequalities, we can show this.
- Round the coordinates of a and b to obtain a point $\left(a^{\prime}, b^{\prime}\right)$ from the discrete grid. Use multivariate Markov inequality to show that the function value at $\left(a^{\prime}, b^{\prime}\right)$ is not too far.

Probabilistic analysis

- Quadratic polynomial $P^{k l}$ emerges out of analysis for gap (D)
- Need to show that for random choices of $a, b, P^{k l}(a, b)$ is bounded far away from 0 with high probability.
We follow a two-step process:
- First, we assume a and b are drawn from the uniform distribution on the hypercube $[-1,1)^{n}$. Using Carbery-Wright inequalities, we can show this.
- Round the coordinates of a and b to obtain a point $\left(a^{\prime}, b^{\prime}\right)$ from the discrete grid. Use multivariate Markov inequality to show that the function value at $\left(a^{\prime}, b^{\prime}\right)$ is not too far.
Inspired by construction of robust hitting sets from
[Forbes,Shpilka, 2018]

Future work

- Composition of numerically stable algorithms
- Undercomplete decompositions (number of summands $r<n$)
- Overcomplete decompositions (number of summands $r>n$)

Thank You!

