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The determinant polynomial– VBP

❑ Let Xn = [xi ,j ]1≤i ,j≤n be a n × n matrix of distinct variables xi ,j . Let
Sn := {𝜋 | 𝜋 : {1, . . . , n} −→ {1, . . . , n} such that 𝜋 is bijective }. Define

fn := det(Xn) =
∑︁
𝜋∈Sn

sgn(𝜋)
n∏

i=1
xi , 𝜋 (i ) .

❑ det is universal, i.e. any polynomial f (x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the
determinantal complexity dc(f ).

❑ E.g. dc(x1 · · · xn) = n, since

x1 · · · xn = det

©«
x1 0 . . . 0
0 x2 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 . . . xn

ª®®®®®¬
.

❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(fn).
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‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. size(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi , 𝜋 (i ) .

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f ).
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Valiant’s Conjecture– VNP

VNP = “hard to compute?” [Valiant 1979]
The class VNP is defined as the set of all sequences of polynomials
(fn (x1, . . . , xn))n≥1 such that pc(fn)is bounded by nc for some constant c.

❑ VBP ⊆ VP ⊆ VNP.

Valiant’s Conjecture [Valiant 1979]
VBP ≠ VNP & VP ≠ VNP. Equivalently, dc(permn) and size(permn) are both
n𝜔 (1) .
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Connections to Boolean circuit complexity

❑ Separating algebraic classes are “easier” than separating classes in Boolean
complexity [Bürgisser 1998]:

➢ P/poly ≠ NP/poly =⇒ VBP ≠ VNP and VP ≠ VNP (over finite fields).

➢ Assuming GRH (Generalized Riemann hypothesis), the results hold over C
as well.
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Border Complexity and GCT



Border complexity

❑ Let Γ be any sensible measure. Eg. it can be size, dc and so on.

❑ For Γ, we can define the border complexity measure Γ via:

Γ(h) is the smallest s such that h(x) can be approximated arbitrarily closely by
polynomials h𝜖 (x) with Γ(h𝜖 ) ≤ s. In other words,

lim
𝜖→0

h𝜖 = h (coefficient-wise) .

❑ This motivates a new model: ‘approximative circuit’.
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Approximative circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

1
𝜖3

𝜖

𝜖3+1

g(x1, . . . , xn, 𝜖) ∈ F(𝜖) [x]

F(𝜖) :=
{

p(𝜖)
q(𝜖) | p, q ∈ F[𝜖], q(𝜖) ≠ 0

}
is the fn.field
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Algebraic approximation

❑ Suppose, we assume the following:
➢ g(x , 𝜖) ∈ F[x1, . . . , xn, 𝜖], i.e. it is a polynomial of the form

g(x , 𝜖) =

M∑︁
i=0

gi (x1, . . . , xn) · 𝜖 i ,

➢ Can we say anything about the complexity of g0?

❑ Obvious attempt:

➢ Since, g(x , 0) = g0, why not just set 𝜖 = 0?! Setting 𝜖 = 0 may not be
‘valid’ as it could be using 1/𝜖 in the wire. Though it is well-defined!

❑ Summary: g0 is non-trivially ‘approximated’ by the circuit, since
lim𝜖→0 g(x , 𝜖) = g0.
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Algebraic approximation— VP

Algebraic Approximation [Bürgisser 2004]
A polynomial h ∈ F[x] has approximative complexity s, if there is a g ∈ F[𝜖] [x], of
size s, and an error polynomial S(x , 𝜖) ∈ F[𝜖] [x] such that
g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖).
Informally we write, lim𝜖→0 g = h.

❑ size(h) ≤ size(h). [h = h + 𝜖 · 0.]

❑ If g has circuit of size s over F(𝜖), then the degree of 𝜖 in g is at most
exponential, 2s2 [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, 2020]. [Bezout’s
degree theorem.]

❑ Let us assume that g(x , 𝜖) = ∑M
i=0 gi𝜖

i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ size(h) ≤ exp(size(h)).

❑ size(h) ≤ size(h) ≤ exp(size(h)).

❑ Curious eg.: Complexity of degree s factor of a size-s polynomial?
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Algebraic approximation— VP

Algebraic Approximation [Bürgisser 2004]
A polynomial h ∈ F[x] has approximative complexity s, if there is a g ∈ F[𝜖] [x], of
size s, and an error polynomial S(x , 𝜖) ∈ F[𝜖] [x] such that
g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖).
Informally we write, lim𝜖→0 g = h.

❑ size(h) ≤ size(h). [h = h + 𝜖 · 0.]

❑ If g has circuit of size s over F(𝜖), then the degree of 𝜖 in g is at most
exponential, 2s2 [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, 2020]. [Bezout’s
degree theorem.]
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Lower bounds for border depth-2 circuits

❑ A few known upper bound/lower bound results on depth-2:

➢ Σ[s]Π = Σ[s]Π and ΠΣ = ΠΣ.

➢ detn is irreducible and exp(n)-sparse. So, detn requires exponential-size
border depth-2 circuits!

➢ What about border depth-3 circuits (both upper bound and lower bound)?
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Border Depth-3 Circuits



Depth-3 circuits

❑ Depth-3 circuits with top fan-in k, are denoted as Σ[k ]ΠΣ.

❑ They compute polynomials (not necessarily homogeneous) of the form∑k
i=1

∏di
j=1 ℓij , where ℓij are linear polynomials (i.e. a0 + a1x1 + . . . + anxn, for

ai ∈ F).

❑ Product fan-in = max di .

❑ How powerful are Σ[k ]ΠΣ circuits, for constant k? Are they universal?

❑ Impossibility result: The Inner Product polynomial
⟨x , y⟩ = x1y1 + . . . + xk+1yk+1 cannot be written as a Σ[k ]ΠΣ circuit,
regardless of the product fan-in (even allowing exp(n) product fan-in!).

❑ The same holds if we replace by detn. Therefore, Σ[k ]ΠΣ ⊊ VBP!

❑ How about Σ[k ]ΠΣ ?

12



Depth-3 circuits

❑ Depth-3 circuits with top fan-in k, are denoted as Σ[k ]ΠΣ.

❑ They compute polynomials (not necessarily homogeneous) of the form∑k
i=1

∏di
j=1 ℓij , where ℓij are linear polynomials (i.e. a0 + a1x1 + . . . + anxn, for

ai ∈ F).

❑ Product fan-in = max di .

❑ How powerful are Σ[k ]ΠΣ circuits, for constant k? Are they universal?

❑ Impossibility result: The Inner Product polynomial
⟨x , y⟩ = x1y1 + . . . + xk+1yk+1 cannot be written as a Σ[k ]ΠΣ circuit,
regardless of the product fan-in (even allowing exp(n) product fan-in!).

❑ The same holds if we replace by detn. Therefore, Σ[k ]ΠΣ ⊊ VBP!

❑ How about Σ[k ]ΠΣ ?

12



Depth-3 circuits

❑ Depth-3 circuits with top fan-in k, are denoted as Σ[k ]ΠΣ.

❑ They compute polynomials (not necessarily homogeneous) of the form∑k
i=1

∏di
j=1 ℓij , where ℓij are linear polynomials (i.e. a0 + a1x1 + . . . + anxn, for

ai ∈ F).

❑ Product fan-in = max di .

❑ How powerful are Σ[k ]ΠΣ circuits, for constant k? Are they universal?

❑ Impossibility result: The Inner Product polynomial
⟨x , y⟩ = x1y1 + . . . + xk+1yk+1 cannot be written as a Σ[k ]ΠΣ circuit,
regardless of the product fan-in (even allowing exp(n) product fan-in!).

❑ The same holds if we replace by detn. Therefore, Σ[k ]ΠΣ ⊊ VBP!

❑ How about Σ[k ]ΠΣ ?

12



Depth-3 circuits

❑ Depth-3 circuits with top fan-in k, are denoted as Σ[k ]ΠΣ.

❑ They compute polynomials (not necessarily homogeneous) of the form∑k
i=1

∏di
j=1 ℓij , where ℓij are linear polynomials (i.e. a0 + a1x1 + . . . + anxn, for

ai ∈ F).

❑ Product fan-in = max di .

❑ How powerful are Σ[k ]ΠΣ circuits, for constant k? Are they universal?

❑ Impossibility result: The Inner Product polynomial
⟨x , y⟩ = x1y1 + . . . + xk+1yk+1 cannot be written as a Σ[k ]ΠΣ circuit,
regardless of the product fan-in (even allowing exp(n) product fan-in!).

❑ The same holds if we replace by detn. Therefore, Σ[k ]ΠΣ ⊊ VBP!

❑ How about Σ[k ]ΠΣ ?

12



Depth-3 circuits

❑ Depth-3 circuits with top fan-in k, are denoted as Σ[k ]ΠΣ.

❑ They compute polynomials (not necessarily homogeneous) of the form∑k
i=1

∏di
j=1 ℓij , where ℓij are linear polynomials (i.e. a0 + a1x1 + . . . + anxn, for

ai ∈ F).

❑ Product fan-in = max di .

❑ How powerful are Σ[k ]ΠΣ circuits, for constant k? Are they universal?

❑ Impossibility result: The Inner Product polynomial
⟨x , y⟩ = x1y1 + . . . + xk+1yk+1 cannot be written as a Σ[k ]ΠΣ circuit,
regardless of the product fan-in (even allowing exp(n) product fan-in!).

❑ The same holds if we replace by detn. Therefore, Σ[k ]ΠΣ ⊊ VBP!

❑ How about Σ[k ]ΠΣ ?

12



Depth-3 circuits

❑ Depth-3 circuits with top fan-in k, are denoted as Σ[k ]ΠΣ.

❑ They compute polynomials (not necessarily homogeneous) of the form∑k
i=1

∏di
j=1 ℓij , where ℓij are linear polynomials (i.e. a0 + a1x1 + . . . + anxn, for

ai ∈ F).

❑ Product fan-in = max di .

❑ How powerful are Σ[k ]ΠΣ circuits, for constant k? Are they universal?

❑ Impossibility result: The Inner Product polynomial
⟨x , y⟩ = x1y1 + . . . + xk+1yk+1 cannot be written as a Σ[k ]ΠΣ circuit,
regardless of the product fan-in (even allowing exp(n) product fan-in!).

❑ The same holds if we replace by detn. Therefore, Σ[k ]ΠΣ ⊊ VBP!

❑ How about Σ[k ]ΠΣ ?

12



Depth-3 circuits

❑ Depth-3 circuits with top fan-in k, are denoted as Σ[k ]ΠΣ.

❑ They compute polynomials (not necessarily homogeneous) of the form∑k
i=1

∏di
j=1 ℓij , where ℓij are linear polynomials (i.e. a0 + a1x1 + . . . + anxn, for

ai ∈ F).

❑ Product fan-in = max di .

❑ How powerful are Σ[k ]ΠΣ circuits, for constant k? Are they universal?

❑ Impossibility result: The Inner Product polynomial
⟨x , y⟩ = x1y1 + . . . + xk+1yk+1 cannot be written as a Σ[k ]ΠΣ circuit,
regardless of the product fan-in (even allowing exp(n) product fan-in!).

❑ The same holds if we replace by detn. Therefore, Σ[k ]ΠΣ ⊊ VBP!

❑ How about Σ[k ]ΠΣ ?

12



Power of border depth-3 circuits

❑ Recall: h ∈ Σ[k ]ΠΣ of size s if there exists a polynomial g such that

g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖) ,

where g can be computed by a Σ[k ]ΠΣ circuit, over F(𝜖), of size s.

Border depth-3 fan-in 2 circuits are ‘universal’ [Kumar 2020]

Let P be any n-variate degree d polynomial. Then, P ∈ Σ[2]ΠΣ, where the first
product has fanin exp(n, d) and the second is merely constant !

13
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Proof of Kumar’s result

Proof.
skip proof

1. Let WR(P) =: m. Then, there are linear forms ℓi such that

P =

m∑︁
i=1

ℓd
i [m can be as large as exp(n, d)] .

2. Consider A(x) := ∏m
i=1 (1 + ℓd

i ) =
∏m

i=1
∏d

j=1 (𝛼j + ℓi ), for 𝛼j ∈ C. Note that

A(x) = 1 + P + B where deg(B) ≥ 2d .

3. Replace xi by 𝜖 · xi to get that

m∏
i=1

d∏
j=1

(𝛼j + 𝜖 · ℓi ) = 1 + 𝜖d · P + 𝜖2d · R(x , 𝜖) .

4. Divide by 𝜖d and rearrange to get

P + 𝜖d · R(x , 𝜖) = −𝜖−d + 𝜖−d ·
m∏

i=1

d∏
j=1

(𝛼j + 𝜖 · ℓi ) ∈ Σ[2]Π [md ]Σ .

□

14
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Proving Upper Bounds



De-bordering Σ[2]ΠΣ circuits

❑ If h is approximated by a Σ[2]ΠΣ circuit with product fanin poly(n), what’s the
exact complexity of h?

Border of poly-size depth-3 top-fanin-2 circuits are ’easy’
[Dutta-Dwivedi-Saxena FOCS’21].

Σ[2]ΠΣ ⊆ VBP, for polynomial-sized Σ[2]ΠΣ-circuits.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.
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Proof sketch for k = 2

Grand Idea: Reduce to k = 1 !

❑ T1 + T2 = f (x) + 𝜖 · S(x , 𝜖), where Ti ∈ ΠΣ ∈ F(𝜖) [x]. Assume deg(f ) = d.

❑ Apply a map Φ, defined by Φ : xi ↦→ z · xi + 𝛼i , where 𝛼i ∈ F are random.

➢ The variable z is the “degree counter”,

➢ 𝛼i ensures: If ℓ | Ti , then Φ(ℓ) |z=0 = ℓ(𝛼1, . . . , 𝛼n) ∈ F(𝜖)∗.

❑ There’s no loss if we study Φ(f ) mod zd+1. [Truncation by degree.]

❑ We devise a technique called DiDIL - Divide, Derive, Induct with Limit.
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k = 2 proof continued: Divide and Derive

❑ val𝜖 (·) denotes the highest power of 𝜖 dividing it (= least one across
monomials). E.g., h = 𝜖−2x1 + 𝜖−1x2 + 𝜖x3. Then, val𝜖 (h) = −2.

❑ Let Φ(Ti ) =: 𝜖ai · T̃i , for i ∈ [2], where ai := val𝜖 (Φ(Ti )).
Then, (i) T̃i ∈ F[𝜖, x , z], and

(ii) lim𝜖→0 T̃2 =: t2 ∈ F[x , z]\{0}, exists.

❑ Divide both side by T̃2 and take partial derivative with respect to z, to get:

Φ(f ) + 𝜖 · Φ(S) = Φ(T1) +Φ(T2)
=⇒ Φ(f )/T̃2 + 𝜖 · Φ(S)/T̃2 = Φ(T1)/T̃2 + 𝜖a2

=⇒ 𝜕z
(
Φ(f )/T̃2

)
+ 𝜖 · 𝜕z

(
Φ(S)/T̃2

)
= 𝜕z

(
Φ(T1)/T̃2

)
=: g1 . (1)

❑ lim𝜖→0 g1 = lim𝜖→0 𝜕z
(
Φ(T1)/T̃2

)
= 𝜕z (Φ(f )/t2).
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k = 2 proof continued

❑ First target: compute lim𝜖→0 g1 = 𝜕z (Φ(f )/t2).

❑ Logarithmic derivative: dlogz (h) := 𝜕z (h)/h.

❑ dlog linearizes product: dlog(h1h2) = dlog(h1) + dlog(h2). Note:

𝜕z
(
Φ(T1)/T̃2

)
= Φ(T1)/T̃2 · dlog

(
Φ(T1)/T̃2

)
= Φ(T1)/T̃2 ·

(
dlog(Φ(T1)) − dlog(T̃2)

)
.

❑ Both Φ(T1) and T̃2 have ΠΣ circuits (they have z and 𝜖).
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k = 2 proof continued

g1 = 𝜕z
(
Φ(T1)/T̃2

)
= Φ(T1)/T̃2 ·

(
dlog(Φ(T1)) − dlog(T̃2)

)
= ΠΣ/ΠΣ · (dlog(ΠΣ) − dlog(ΠΣ))

= ΠΣ/ΠΣ ·
(∑︁

dlog(Σ)
)
.

❑ Here, Σ signifies just a linear polynomial ℓ (in z, x and unit mod z).

❑ Recall: lim𝜖→0 g1 = 𝜕z (Φ(f )/t2).

❑ deg(f ) = d =⇒ degz (Φ(f )) = d =⇒ degz (𝜕z (Φ(f ))) = d − 1.

❑ Suffices to compute g1 mod zd and take the limit!
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k = 2 proof: dlog strikes!

❑ What is dlog(ℓ)?

Note, ℓ =: A − z · B, where A ∈ F(𝜖)∗, B ∈ F(𝜖) [x].

dlog(A − zB) = − B
A (1 − z · B/A)

= −B
A

·
d−1∑︁
j=0

(
z · B

A

) j

∈ Σ ∧ Σ . [Magic trick]

❑ Thus,

lim
𝜖→0

g1 mod zd ≡ lim
𝜖→0

ΠΣ/ΠΣ ·
(∑︁

dlog(Σ)
)

mod zd

≡ lim
𝜖→0

(ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd

∈ (ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd .
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Finishing the proof– Induct and Limit

❑ C · D ⊆ C · D. Therefore,

(ΠΣ/ΠΣ) · (Σ ∧ Σ) ⊆ (ΠΣ/ΠΣ) · Σ ∧ Σ

⊆ (ABP/ABP) · ABP

= ABP/ABP .

❑ Eliminate division, and integrate (interpolate wrt z) to get
Φ(f )/t2 = ABP =⇒ Φ(f ) = ABP =⇒ f = ABP.
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Proving Lower Bounds



Lifting classical lower bound in the border

❑ Can we separate Σ[k ]ΠΣ and VBP?

➢ [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that IMMn,d with
d = o(log n) requires n𝜔 (1) -size depth-3 circuits.

➢ Rank-based lower bounds can be lifted in the border!

➢ Since, IMMn,d ∈ VBP, Σ[k ]ΠΣ ≠ VBP.
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Looking for finer lower bounds

❑ Can we show an exponential gap between Σ[k ]ΠΣ and VBP?

❑ Ambitious goal: Can we separate Σ[k ]ΠΣ and Σ[k+1]ΠΣ ?

❑ Note: This (impossibility) is already known in the classical setting!

❑ x1 · y1 + . . . + xk+1 · yk+1 cannot be computed by Σ[k ]ΠΣ circuits!

❑ Catch: x1 · y1 + . . . + xk+1 · yk+1 does not work anymore in border, since,
x1 · y1 + . . . + xk+1 · yk+1 ∈ Σ[2]ΠO (k )Σ !

❑ What does work (if at all!)?
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Our results

[Dutta-Saxena FOCS’22]
Fix any constant k ≥ 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a Σ[k+1]ΠΣ circuit of size O(n);

but, f requires 2Ω(n) -size Σ[k ]ΠΣ circuits.

❑ Fix k = 2. Define the polynomial Pd := x1 · · · xd + y1 · · · yd + z1 · · · zd , a
degree-d polynomial on n = 3d-variables.

❑ Pd has trivial fanin-3 depth-3 circuit (and hence in border too!).

❑ We will show that Pd requires 2Ω(d ) -size Σ[2]ΠΣ circuits.

❑ Kumar’s proof establishes that Pd has a 2O (d ) -size Σ[2]ΠΣ circuits, showing
optimality!

❑ Classical is about impossibility. While, border is about optimality.
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Non-homogeneity is ‘bad’

❑ Recall the non-border lower bound proof, of making an ideal Ik = ⟨ℓ1, . . . , ℓk⟩,
such that f ≠ 0 mod Ik , but Σ[k ]ΠΣ = 0 mod Ik .

❑ Let ℓ1 := 1 + 𝜖x1. What does taking mod ℓ1 in the ‘border’ (𝜖 → 0) mean?
Essentially we are eventually setting x1 = −1/𝜖 (and then 𝜖 → 0)!

❑ In other words, work with I := ⟨ℓ1, 𝜖⟩ = ⟨1⟩!

❑ Lesson: Taking mod blindly fails miserably!

❑ The worst case:
f + 𝜖S = T1 + T2 ,

where Ti has each linear factor of the form 1 + 𝜖ℓ!
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Non-homogeneity is all we need to care

❑ Three cases to consider:
➢ Case I: Each T1 and T2 has one linear polynomial ℓi ∈ F(𝜖) [x] as a factor,

whose 𝜖-free term is a linear form. Example: ℓ = (1 + 𝜖)x1 + 𝜖x2,

➢ Case II (intermediate): T1 has one homogeneous factor (say ℓ1) and 𝜖-free
part of all factors in T2 are non-homogeneous (in x). Non-homogeneous
example: (1 + 𝜖) + 𝜖x1.

➢ Case III (all-non-homogeneous): Each Ti has all the linear polynomial
factors whose 𝜖-free part is non-homogeneous.

❑ For the first case, take I := ⟨ℓ1, ℓ2, 𝜖⟩ (⇒ 1 ∉ I) and show that
x1 · · · xd + y1 · · · yd + z1 · · · zd = Pd mod I ≠ 0,
while RHS circuit ≡ 0 mod I.

❑ For the second case, take I := ⟨ℓ1, 𝜖⟩. Then, RHS mod I ∈ ΠΣ = ΠΣ, while
Pd mod I ∉ ΠΣ.

❑ So, all-non-homogeneous is all we have to handle!
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➢ Case II (intermediate): T1 has one homogeneous factor (say ℓ1) and 𝜖-free
part of all factors in T2 are non-homogeneous (in x). Non-homogeneous
example: (1 + 𝜖) + 𝜖x1.

➢ Case III (all-non-homogeneous): Each Ti has all the linear polynomial
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Lower bound for all-non-homogeneous k = 2

❑ Pd (x) + 𝜖 · S(x , 𝜖) = T1 + T2, where Ti ∈ ΠΣ ∈ F(𝜖) [x] have
all-non-homogeneous factors.

❑ Use DiDIL with the (different) map Φ : x ↦→ zx .

❑ DiDIL shows:

𝜕z (zdPd/t2) = lim
𝜖→0

g1 ∈ (ΠΣ/ΠΣ) · (Σ ∧ Σ) .

❑ Use the minimum power of z to show that Pd ∈ Σs ∧ Σ.

❑ Partial-derivative measure shows that the above implies s ≥ 2Ω(d ) !
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Conclusion



Concluding remarks

❑ ROABP core gives us many PIT results (see our two papers).

❑ Can we show Σ[k ]ΠΣ ⊆ ΣΠΣ (resp. VF)?

❑ Can we extend the hierarchy theorem to bounded (top & bottom fanin) depth-4
circuits? i.e., for a fixed constant 𝛿, is

Σ[1]ΠΣΠ [ 𝛿 ] ⊊ Σ[2]ΠΣΠ [ 𝛿 ] ⊊ Σ[3]ΠΣΠ [ 𝛿 ] · · · ,
where the respective gaps are exponential? Clearly, 𝛿 = 1 holds, from this work.

Thank you! Questions?
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