Demystifying the border of depth-3 circuits

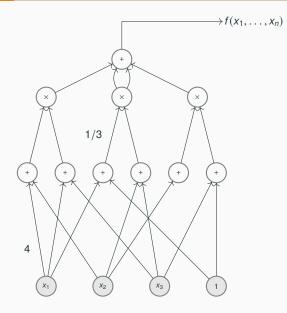
Joint works with Pranjal Dutta & Prateek Dwivedi. [CCC'21, FOCS'21, FOCS'22]

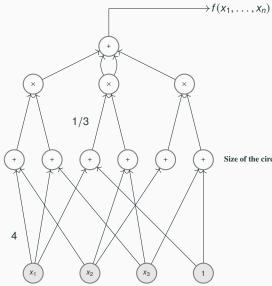
Nitin Saxena CSE, IIT Kanpur

March 30th, 2023 WACT @ CS, University of Warwick, UK

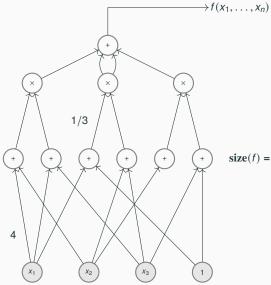
- 1. Basic Definitions and Terminologies
- 2. Border Complexity and GCT
- 3. Border Depth-3 Circuits
- 4. Proving Upper Bounds
- 5. Proving Lower Bounds
- 6. Conclusion

Basic Definitions and Terminologies

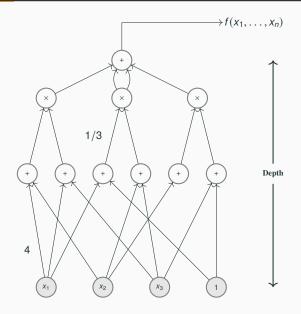




Size of the circuit = number of nodes + edges



size(f) = min size of the circuit computing f



□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)} .$$

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)} .$$

□ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)} .$$

- □ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .
- □ The minimum dimension of the matrix to compute *f*, is called the determinantal complexity dc(*f*).

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)} .$$

- □ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .
- □ The minimum dimension of the matrix to compute *f*, is called the determinantal complexity dc(*f*).
- \Box E.g. dc($x_1 \cdots x_n$) = n, since

$$x_1 \cdots x_n = \det \begin{pmatrix} x_1 & 0 & \dots & 0 \\ 0 & x_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & x_n \end{pmatrix}.$$

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)} .$$

- □ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .
- □ The minimum dimension of the matrix to compute *f*, is called the determinantal complexity dc(*f*).
- \Box E.g. dc($x_1 \cdots x_n$) = n, since

$$x_1 \cdots x_n = \det \begin{pmatrix} x_1 & 0 & \dots & 0 \\ 0 & x_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & x_n \end{pmatrix}.$$

□ VBP: The class VBP is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded dc (f_n) .

□ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. size $(f_n) = n^{\omega(1)}$?

- □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. size $(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11].

- □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. size $(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!

- □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. size $(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!
- □ Candidate hard polynomial:

$$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)} .$$

- □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. size $(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!
- □ Candidate hard polynomial:

$$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)} .$$

□ The minimum dimension of the matrix to compute *f*, is called the **permanental** complexity pc(*f*).

VNP = "hard to compute?" [Valiant 1979]

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1, \ldots, x_n))_{n \ge 1}$ such that $pc(f_n)$ is bounded by n^c for some constant *c*.

VNP = "hard to compute?" [Valiant 1979]

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1, \ldots, x_n))_{n \ge 1}$ such that $pc(f_n)$ is bounded by n^c for some constant *c*.

 $\Box VBP \subseteq VP \subseteq VNP.$

VNP = "hard to compute?" [Valiant 1979]

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1, \ldots, x_n))_{n \ge 1}$ such that $pc(f_n)$ is bounded by n^c for some constant *c*.

 $\Box VBP \subseteq VP \subseteq VNP.$

Valiant's Conjecture [Valiant 1979]

VBP \neq VNP & VP \neq VNP. Equivalently, dc(perm_n) and size(perm_n) are both $n^{\omega(1)}$.

Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:

- Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:
 - > P/poly \neq NP/poly \implies VBP \neq VNP and VP \neq VNP (over finite fields).

- Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:
 - > P/poly \neq NP/poly \implies VBP \neq VNP and VP \neq VNP (over finite fields).
 - Assuming GRH (Generalized Riemann hypothesis), the results hold over C as well.

Border Complexity and GCT

 \Box Let Γ be any sensible measure. Eg. it can be size, dc and so on.

- \Box Let Γ be any sensible measure. Eg. it can be size, dc and so on.
- \Box For Γ , we can define the border complexity measure $\overline{\Gamma}$ via:
 - $\overline{\Gamma}(h)$ is the *smallest* \boldsymbol{s} such that $h(\boldsymbol{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\boldsymbol{x})$ with $\Gamma(h_{\epsilon}) \leq \boldsymbol{s}$.

- \Box Let Γ be any sensible measure. Eg. it can be size, dc and so on.
- \Box For Γ , we can define the border complexity measure $\overline{\Gamma}$ via:

 $\Gamma(h)$ is the *smallest* **s** such that $h(\mathbf{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\mathbf{x})$ with $\Gamma(h_{\epsilon}) \leq \mathbf{s}$. In other words,

 $\lim_{\epsilon \to 0} h_{\epsilon} = h \text{ (coefficient-wise)}.$

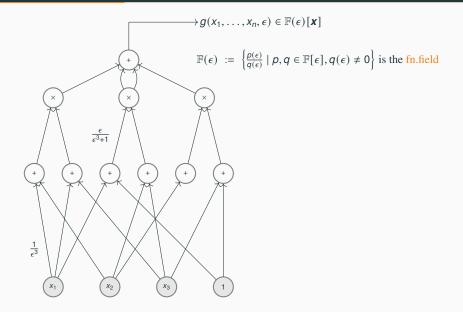
- \Box Let Γ be any sensible measure. Eg. it can be size, dc and so on.
- \Box For Γ , we can define the border complexity measure $\overline{\Gamma}$ via:

 $\overline{\Gamma}(h)$ is the *smallest* \boldsymbol{s} such that $h(\boldsymbol{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\boldsymbol{x})$ with $\Gamma(h_{\epsilon}) \leq \boldsymbol{s}$. In other words,

 $\lim_{\epsilon \to 0} h_{\epsilon} = h \text{ (coefficient-wise)}.$

□ This motivates a new model: '*approximative circuit*'.

Approximative circuits



 \succ *g*(**x**, *ϵ*) ∈ **F**[*x*₁,...,*x*_n, *ϵ*], i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

 \succ *g*(**x**, *ϵ*) ∈ **F**[*x*₁,...,*x*_n, *ϵ*], i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

> Can we say anything about the complexity of g_0 ?

> $g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, ..., x_n, \epsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

> Can we say anything about the complexity of g_0 ?

□ Obvious attempt:

> Since, $g(\mathbf{x}, 0) = g_0$, why not just set $\epsilon = 0$?!

> $g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, ..., x_n, \epsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

> Can we say anything about the complexity of g_0 ?

□ Obvious attempt:

> Since, $g(\mathbf{x}, 0) = g_0$, why not just set $\epsilon = 0$?! Setting $\epsilon = 0$ may not be 'valid' as it could be using $1/\epsilon$ in the wire. Though it is well-defined!

 \succ $g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, ..., x_n, \epsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

> Can we say anything about the complexity of g_0 ?

□ Obvious attempt:

> Since, $g(\mathbf{x}, 0) = g_0$, why not just set $\epsilon = 0$?! Setting $\epsilon = 0$ may not be 'valid' as it could be using $1/\epsilon$ in the wire. Though it is well-defined!

□ Summary: g_0 is **non-trivially** 'approximated' by the circuit, since $\lim_{\epsilon \to 0} g(\mathbf{x}, \epsilon) = g_0$.

Algebraic Approximation [Bürgisser 2004]

A polynomial $h \in \mathbb{F}[\mathbf{x}]$ has approximative complexity s, if there is a $g \in \mathbb{F}[\epsilon][\mathbf{x}]$, of size s, and an error polynomial $S(\mathbf{x}, \epsilon) \in \mathbb{F}[\epsilon][\mathbf{x}]$ such that $g(\mathbf{x}, \epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$.

Informally we write, $\lim_{\epsilon \to 0} g = h$.

A polynomial $h \in \mathbb{F}[\mathbf{x}]$ has approximative complexity s, if there is a $g \in \mathbb{F}[\epsilon][\mathbf{x}]$, of size s, and an error polynomial $S(\mathbf{x}, \epsilon) \in \mathbb{F}[\epsilon][\mathbf{x}]$ such that $g(\mathbf{x}, \epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$.

Informally we write, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \leq \text{size}(h).$

A polynomial $h \in \mathbb{F}[\mathbf{x}]$ has approximative complexity s, if there is a $g \in \mathbb{F}[\epsilon][\mathbf{x}]$, of size s, and an error polynomial $S(\mathbf{x}, \epsilon) \in \mathbb{F}[\epsilon][\mathbf{x}]$ such that $g(\mathbf{x}, \epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$.

Informally we write, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \le \text{size}(h). \ [h = h + \epsilon \cdot 0.]$

A polynomial $h \in \mathbb{F}[\mathbf{x}]$ has approximative complexity s, if there is a $g \in \mathbb{F}[\epsilon][\mathbf{x}]$, of size s, and an error polynomial $S(\mathbf{x}, \epsilon) \in \mathbb{F}[\epsilon][\mathbf{x}]$ such that $g(\mathbf{x}, \epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$.

Informally we write, $\lim_{\epsilon \to 0} g = h$.

- $\Box \ \overline{\text{size}}(h) \le \text{size}(h). \ [h = h + \epsilon \cdot 0.]$
- □ If g has circuit of size s over F(ε), then the degree of ε in g is at most exponential, 2^{s²} [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, 2020].

A polynomial $h \in \mathbb{F}[\mathbf{x}]$ has approximative complexity s, if there is a $g \in \mathbb{F}[\epsilon][\mathbf{x}]$, of size s, and an error polynomial $S(\mathbf{x}, \epsilon) \in \mathbb{F}[\epsilon][\mathbf{x}]$ such that $g(\mathbf{x}, \epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$.

Informally we write, $\lim_{\epsilon \to 0} g = h$.

- $\Box \ \overline{\text{size}}(h) \le \text{size}(h). \ [h = h + \epsilon \cdot 0.]$
- □ If g has circuit of size s over F(ε), then the degree of ε in g is at most exponential, 2^{s²} [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, 2020]. [Bezout's degree theorem.]

A polynomial $h \in \mathbb{F}[\mathbf{x}]$ has approximative complexity s, if there is a $g \in \mathbb{F}[\epsilon][\mathbf{x}]$, of size s, and an error polynomial $S(\mathbf{x}, \epsilon) \in \mathbb{F}[\epsilon][\mathbf{x}]$ such that $g(\mathbf{x}, \epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$.

Informally we write, $\lim_{\epsilon \to 0} g = h$.

- $\Box \ \overline{\text{size}}(h) \leq \text{size}(h). \ [h = h + \epsilon \cdot 0.]$
- □ If g has circuit of size s over F(ε), then the degree of ε in g is at most exponential, 2^{s²} [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, 2020]. [Bezout's degree theorem.]

□ Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

A polynomial $h \in \mathbb{F}[\mathbf{x}]$ has approximative complexity s, if there is a $g \in \mathbb{F}[\epsilon][\mathbf{x}]$, of size s, and an error polynomial $S(\mathbf{x}, \epsilon) \in \mathbb{F}[\epsilon][\mathbf{x}]$ such that $g(\mathbf{x}, \epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$.

Informally we write, $\lim_{\epsilon \to 0} g = h$.

- $\Box \ \overline{\text{size}}(h) \le \text{size}(h). \ [h = h + \epsilon \cdot 0.]$
- □ If g has circuit of size s over F(ε), then the degree of ε in g is at most exponential, 2^{s²} [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, 2020]. [Bezout's degree theorem.]
- \Box Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

> Pick M + 1 many distinct values from \mathbb{F} randomly and interpolate;

A polynomial $h \in \mathbb{F}[\mathbf{x}]$ has approximative complexity s, if there is a $g \in \mathbb{F}[\epsilon][\mathbf{x}]$, of size s, and an error polynomial $S(\mathbf{x}, \epsilon) \in \mathbb{F}[\epsilon][\mathbf{x}]$ such that $g(\mathbf{x}, \epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$.

Informally we write, $\lim_{\epsilon \to 0} g = h$.

- $\Box \ \overline{\text{size}}(h) \leq \text{size}(h). \ [h = h + \epsilon \cdot 0.]$
- □ If g has circuit of size s over F(ε), then the degree of ε in g is at most exponential, 2^{s²} [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, 2020]. [Bezout's degree theorem.]
- \Box Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.
 - > Pick M + 1 many distinct values from \mathbb{F} randomly and interpolate;
 - ▶ size(h) ≤ exp($\overline{\text{size}}(h)$).

A polynomial $h \in \mathbb{F}[\mathbf{x}]$ has approximative complexity s, if there is a $g \in \mathbb{F}[\epsilon][\mathbf{x}]$, of size s, and an error polynomial $S(\mathbf{x}, \epsilon) \in \mathbb{F}[\epsilon][\mathbf{x}]$ such that $g(\mathbf{x}, \epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$.

Informally we write, $\lim_{\epsilon \to 0} g = h$.

- $\Box \ \overline{\text{size}}(h) \le \text{size}(h). \ [h = h + \epsilon \cdot 0.]$
- □ If g has circuit of size s over F(ε), then the degree of ε in g is at most exponential, 2^{s²} [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, 2020]. [Bezout's degree theorem.]
- \Box Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.
 - > Pick M + 1 many distinct values from \mathbb{F} randomly and interpolate;
 - \succ size(*h*) ≤ exp(size(*h*)).
- $\Box \ \overline{\text{size}}(h) \le \text{size}(h) \le \exp(\overline{\text{size}}(h)).$

A polynomial $h \in \mathbb{F}[\mathbf{x}]$ has approximative complexity s, if there is a $g \in \mathbb{F}[\epsilon][\mathbf{x}]$, of size s, and an error polynomial $S(\mathbf{x}, \epsilon) \in \mathbb{F}[\epsilon][\mathbf{x}]$ such that $g(\mathbf{x}, \epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$.

Informally we write, $\lim_{\epsilon \to 0} g = h$.

- $\Box \ \overline{\text{size}}(h) \leq \text{size}(h). \ [h = h + \epsilon \cdot 0.]$
- □ If g has circuit of size s over F(ε), then the degree of ε in g is at most exponential, 2^{s²} [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, 2020]. [Bezout's degree theorem.]
- \Box Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.
 - > Pick M + 1 many distinct values from \mathbb{F} randomly and interpolate;

▶ size(h) ≤ exp($\overline{\text{size}}(h)$).

- $\Box \ \overline{\text{size}}(h) \le \text{size}(h) \le \exp(\overline{\text{size}}(h)).$
- Curious eg.: Complexity of degree *s* factor of a size-*s* polynomial?

□ A few known upper bound/lower bound results on depth-2:

 \Box A few known upper bound/lower bound results on depth-2:

 $\succ \overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi$ and $\overline{\Pi\Sigma} = \Pi\Sigma$.

- \Box A few known upper bound/lower bound results on depth-2:
 - $\succ \overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi$ and $\overline{\Pi\Sigma} = \Pi\Sigma$.
 - det_n is irreducible and exp(n)-sparse. So, det_n requires exponential-size border depth-2 circuits!

- \Box A few known upper bound/lower bound results on depth-2:
 - $\succ \overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi$ and $\overline{\Pi\Sigma} = \Pi\Sigma$.
 - det_n is irreducible and exp(n)-sparse. So, det_n requires exponential-size border depth-2 circuits!
 - > What about border depth-3 circuits (both upper bound and lower bound)?

Border Depth-3 Circuits

 \Box Depth-3 circuits with top fan-in *k*, are denoted as $\Sigma^{[k]}\Pi\Sigma$.

Depth-3 circuits with top fan-in *k*, are denoted as $\Sigma^{[k]}$ ΠΣ.

□ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).

- **Depth-3** circuits with top fan-in *k*, are denoted as $\Sigma^{[k]}$ ΠΣ.
- □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).
- **D** Product fan-in = $\max d_i$.

- **Depth-3** circuits with top fan-in *k*, are denoted as $\Sigma^{[k]}$ ΠΣ.
- □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).
- **D** Product fan-in = $\max d_i$.
- \Box How powerful are $\Sigma^{[k]}\Pi\Sigma$ circuits, for constant *k*? Are they *universal*?

- **Depth-3** circuits with top fan-in *k*, are denoted as $\Sigma^{[k]}$ ΠΣ.
- □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).
- **D** Product fan-in = $\max d_i$.
- \Box How powerful are $\Sigma^{[k]}\Pi\Sigma$ circuits, for constant *k*? Are they *universal*?
- □ Impossibility result: The *Inner Product* polynomial $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + \ldots + x_{k+1} y_{k+1}$ cannot be written as a $\Sigma^{[k]} \Pi \Sigma$ circuit, *regardless* of the product fan-in (even allowing exp(*n*) product fan-in!).

- **Depth-3** circuits with top fan-in *k*, are denoted as $\Sigma^{[k]}\Pi\Sigma$.
- □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).
- **D** Product fan-in = $\max d_i$.
- \Box How powerful are $\Sigma^{[k]}\Pi\Sigma$ circuits, for constant *k*? Are they *universal*?
- □ Impossibility result: The *Inner Product* polynomial $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + \ldots + x_{k+1} y_{k+1}$ cannot be written as a $\Sigma^{[k]} \Pi \Sigma$ circuit, *regardless* of the product fan-in (even allowing exp(*n*) product fan-in!).
- □ The same holds if we replace by \det_n . Therefore, $\Sigma^{[k]}\Pi\Sigma \subsetneq \mathsf{VBP}!$

- **Depth-3** circuits with top fan-in *k*, are denoted as $\Sigma^{[k]}\Pi\Sigma$.
- □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).
- **D** Product fan-in = $\max d_i$.
- \Box How powerful are $\Sigma^{[k]}\Pi\Sigma$ circuits, for constant *k*? Are they *universal*?
- □ Impossibility result: The *Inner Product* polynomial $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + \ldots + x_{k+1} y_{k+1}$ cannot be written as a $\Sigma^{[k]} \Pi \Sigma$ circuit, *regardless* of the product fan-in (even allowing exp(*n*) product fan-in!).
- □ The same holds if we replace by \det_n . Therefore, $\Sigma^{[k]}\Pi\Sigma \subsetneq VBP!$
- $\Box \text{ How about } \overline{\Sigma^{[k]} \Pi \Sigma} ?$

 $g(\pmb{x},\epsilon) = h(\pmb{x}) + \epsilon \cdot S(\pmb{x},\epsilon) \; , \label{eq:g_star}$

 $g(\mathbf{x},\epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x},\epsilon) ,$

where *g* can be computed by a $\Sigma^{[k]}\Pi\Sigma$ circuit, over $\mathbb{F}(\epsilon)$, of size *s*.

 $g(\mathbf{x},\epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x},\epsilon) ,$

where *g* can be computed by a $\Sigma^{[k]}\Pi\Sigma$ circuit, over $\mathbb{F}(\epsilon)$, of size *s*.

Border depth-3 fan-in 2 circuits are 'universal' [Kumar 2020]

Let *P* be any *n*-variate degree *d* polynomial. Then, $P \in \overline{\Sigma^{[2]} \Pi \Sigma}$,

 $g(\mathbf{x},\epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x},\epsilon) ,$

where *g* can be computed by a $\Sigma^{[k]}\Pi\Sigma$ circuit, over $\mathbb{F}(\epsilon)$, of size *s*.

Border depth-3 fan-in 2 circuits are 'universal' [Kumar 2020]

Let *P* be *any n*-variate degree *d* polynomial. Then, $P \in \Sigma^{[2]} \Pi \Sigma$, where the first product has fanin $\exp(n, d)$ and the second is merely constant !

Proof.

➡ skip proof

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

Proof.

➡ skip proof

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

$$P = \sum_{i=1}^{m} \ell_i^d \qquad [m \text{ can be as large as } \exp(n, d)].$$

Proof.

skip proof

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

 $P = \sum_{i=1}^{m} \ell_i^d \qquad [m \text{ can be as large as } \exp(n, d)].$

2. Consider $A(\mathbf{x}) := \prod_{i=1}^{m} (1 + \ell_i^d) = \prod_{i=1}^{m} \prod_{j=1}^{d} (\alpha_j + \ell_j)$, for $\alpha_j \in \mathbb{C}$.

Proof.

. ➡ skip proof

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

$$P = \sum_{i=1}^{m} \ell_i^d \qquad [m \text{ can be as large as } \exp(n, d)].$$

2. Consider $A(\mathbf{x}) := \prod_{i=1}^{m} (1 + \ell_i^d) = \prod_{i=1}^{m} \prod_{j=1}^{d} (\alpha_j + \ell_i)$, for $\alpha_j \in \mathbb{C}$. Note that

 $A(\mathbf{x}) = 1 + P + B$ where deg $(B) \ge 2d$.

Proof.

skip proof

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

$$P = \sum_{i=1}^{m} \ell_i^d \qquad [m \text{ can be as large as } \exp(n, d)].$$

2. Consider $A(\mathbf{x}) := \prod_{i=1}^{m} (1 + \ell_i^d) = \prod_{i=1}^{m} \prod_{j=1}^{d} (\alpha_j + \ell_j)$, for $\alpha_j \in \mathbb{C}$. Note that

 $A(\mathbf{x}) = 1 + P + B$ where deg $(B) \ge 2d$.

3. Replace x_i by $\epsilon \cdot x_i$ to get that

Proof.

skip proof

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

$$P = \sum_{i=1}^{m} \ell_i^d \qquad [m \text{ can be as large as } \exp(n, d)].$$

2. Consider $A(\mathbf{x}) := \prod_{i=1}^{m} (1 + \ell_i^d) = \prod_{i=1}^{m} \prod_{j=1}^{d} (\alpha_j + \ell_i)$, for $\alpha_j \in \mathbb{C}$. Note that

 $A(\mathbf{x}) = 1 + P + B$ where deg $(B) \ge 2d$.

3. Replace x_i by $\epsilon \cdot x_i$ to get that

$$\prod_{i=1}^{m} \prod_{j=1}^{d} (\alpha_j + \epsilon \cdot \ell_i) = 1 + \epsilon^d \cdot P + \epsilon^{2d} \cdot R(\boldsymbol{x}, \epsilon) .$$

Proof.

skip proof

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

$$P = \sum_{i=1}^{m} \ell_i^d \qquad [m \text{ can be as large as } \exp(n, d)].$$

2. Consider $A(\mathbf{x}) := \prod_{i=1}^{m} (1 + \ell_i^d) = \prod_{i=1}^{m} \prod_{j=1}^{d} (\alpha_j + \ell_i)$, for $\alpha_j \in \mathbb{C}$. Note that

 $A(\mathbf{x}) = 1 + P + B$ where deg $(B) \ge 2d$.

3. Replace x_i by $\epsilon \cdot x_i$ to get that

$$\prod_{i=1}^{m} \prod_{j=1}^{d} (\alpha_j + \epsilon \cdot \ell_j) = 1 + \epsilon^d \cdot P + \epsilon^{2d} \cdot R(\boldsymbol{x}, \epsilon) .$$

4. Divide by ϵ^d and rearrange to get

$$P + \epsilon^d \cdot R(\boldsymbol{x}, \epsilon) = -\epsilon^{-d} + \epsilon^{-d} \cdot \prod_{i=1}^m \prod_{j=1}^d (\alpha_j + \epsilon \cdot \ell_i) \in \Sigma^{[2]} \Pi^{[md]} \Sigma \; .$$

Proving Upper Bounds

□ If *h* is approximated by a $\Sigma^{[2]}\Pi\Sigma$ circuit with product fanin poly(*n*), what's the *exact* complexity of *h*?

□ If *h* is approximated by a $\Sigma^{[2]}\Pi\Sigma$ circuit with product fanin poly(*n*), what's the *exact* complexity of *h*?

Border of poly-size depth-3 top-fanin-2 circuits are 'easy' [Dutta-Dwivedi-Saxena FOCS'21].

 $\overline{\Sigma^{[2]}\Pi\Sigma} \subseteq \mathsf{VBP}$, for polynomial-sized $\overline{\Sigma^{[2]}\Pi\Sigma}$ -circuits.

□ If *h* is approximated by a $\Sigma^{[2]}\Pi\Sigma$ circuit with product fanin poly(*n*), what's the *exact* complexity of *h*?

Border of poly-size depth-3 top-fanin-2 circuits are 'easy' [Dutta-Dwivedi-Saxena FOCS'21].

 $\overline{\Sigma^{[2]}\Pi\Sigma} \subseteq \mathsf{VBP}$, for polynomial-sized $\overline{\Sigma^{[2]}\Pi\Sigma}$ -circuits.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant *k*.

 $\Box T_1 + T_2 = f(\boldsymbol{x}) + \epsilon \cdot S(\boldsymbol{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]. \text{ Assume } \deg(f) = d.$

 $\Box T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]. \text{ Assume } \deg(f) = d.$

□ Apply a map Φ , defined by $\Phi : x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.

 $\Box T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]. \text{ Assume } \deg(f) = d.$

□ Apply a map Φ , defined by $\Phi : x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.

 \succ The variable *z* is the "degree counter",

 $\Box T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]. \text{ Assume } \deg(f) = d.$

□ Apply a map Φ , defined by Φ : $x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.

 \succ The variable *z* is the "degree counter",

 $\succ \alpha_i$ ensures: If $\ell \mid T_i$, then $\Phi(\ell)|_{z=0} = \ell(\alpha_1, \dots, \alpha_n) \in \mathbb{F}(\epsilon)^*$.

 $\Box T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]. \text{ Assume } \deg(f) = d.$

□ Apply a map Φ , defined by Φ : $x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.

 \succ The variable *z* is the "degree counter",

 $\succ \alpha_i$ ensures: If $\ell \mid T_i$, then $\Phi(\ell)|_{z=0} = \ell(\alpha_1, \dots, \alpha_n) \in \mathbb{F}(\epsilon)^*$.

 \Box There's *no* loss if we study $\Phi(f) \mod z^{d+1}$.

 $\Box T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]. \text{ Assume } \deg(f) = d.$

□ Apply a map Φ , defined by Φ : $x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.

 \succ The variable *z* is the "degree counter",

 $\succ \alpha_i$ ensures: If $\ell \mid T_i$, then $\Phi(\ell)|_{z=0} = \ell(\alpha_1, \dots, \alpha_n) \in \mathbb{F}(\epsilon)^*$.

□ There's *no* loss if we study $\Phi(f) \mod z^{d+1}$. [Truncation by degree.]

 $\Box T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]. \text{ Assume } \deg(f) = d.$

□ Apply a map Φ , defined by Φ : $x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.

 \succ The variable *z* is the "degree counter",

 $\succ \alpha_i$ ensures: If $\ell \mid T_i$, then $\Phi(\ell)|_{z=0} = \ell(\alpha_1, \dots, \alpha_n) \in \mathbb{F}(\epsilon)^*$.

□ There's *no* loss if we study $\Phi(f) \mod z^{d+1}$. [Truncation by degree.]

□ We devise a technique called DiDIL - Divide, Derive, Induct with Limit.

□ $\operatorname{val}_{\epsilon}(\cdot)$ denotes the highest power of ϵ dividing it (= least one across monomials). E.g., $h = \epsilon^{-2}x_1 + \epsilon^{-1}x_2 + \epsilon x_3$. Then, $\operatorname{val}_{\epsilon}(h) = -2$.

□ val_ε(·) denotes the highest power of ϵ dividing it (= least one across monomials). E.g., $h = \epsilon^{-2}x_1 + \epsilon^{-1}x_2 + \epsilon x_3$. Then, val_ε(h) = -2.

 $\Box \text{ Let } \Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i, \text{ for } i \in [2], \text{ where } a_i := \text{val}_{\epsilon} (\Phi(T_i)).$

□ val_ε(·) denotes the highest power of ϵ dividing it (= least one across monomials). E.g., $h = \epsilon^{-2}x_1 + \epsilon^{-1}x_2 + \epsilon x_3$. Then, val_ε(h) = -2.

□ Let $\Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i$, for $i \in [2]$, where $a_i := \operatorname{val}_{\epsilon} (\Phi(T_i))$. Then, (i) $\tilde{T}_i \in \mathbb{F}[\epsilon, \mathbf{x}, z]$, and (ii) $\lim_{\epsilon \to 0} \tilde{T}_2 =: t_2 \in \mathbb{F}[\mathbf{x}, z] \setminus \{0\}$, exists.

□ val_ε(·) denotes the highest power of ϵ dividing it (= least one across monomials). E.g., $h = \epsilon^{-2}x_1 + \epsilon^{-1}x_2 + \epsilon x_3$. Then, val_ε(h) = -2.

□ Let $\Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i$, for $i \in [2]$, where $a_i := \operatorname{val}_{\epsilon} (\Phi(T_i))$. Then, (i) $\tilde{T}_i \in \mathbb{F}[\epsilon, \mathbf{x}, z]$, and (ii) $\lim_{\epsilon \to 0} \tilde{T}_2 =: t_2 \in \mathbb{F}[\mathbf{x}, z] \setminus \{0\}$, exists.

 \Box Divide both side by \tilde{T}_2 and take partial derivative with respect to z, to get:

□ val_ε(·) denotes the highest power of ϵ dividing it (= least one across monomials). E.g., $h = \epsilon^{-2}x_1 + \epsilon^{-1}x_2 + \epsilon x_3$. Then, val_ε(h) = -2.

□ Let $\Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i$, for $i \in [2]$, where $a_i := \operatorname{val}_{\epsilon} (\Phi(T_i))$. Then, (i) $\tilde{T}_i \in \mathbb{F}[\epsilon, \mathbf{x}, z]$, and (ii) $\lim_{\epsilon \to 0} \tilde{T}_2 =: t_2 \in \mathbb{F}[\mathbf{x}, z] \setminus \{0\}$, exists.

 \Box Divide both side by \tilde{T}_2 and take partial derivative with respect to z, to get:

$$\Phi(f) + \epsilon \cdot \Phi(S) = \Phi(T_1) + \Phi(T_2)$$

$$\implies \Phi(f)/\tilde{T}_2 + \epsilon \cdot \Phi(S)/\tilde{T}_2 = \Phi(T_1)/\tilde{T}_2 + \epsilon^{a_2}$$

$$\implies \partial_z \left(\Phi(f)/\tilde{T}_2 \right) + \epsilon \cdot \partial_z \left(\Phi(S)/\tilde{T}_2 \right) = \partial_z \left(\Phi(T_1)/\tilde{T}_2 \right) =: g_1 . \quad (1)$$

□ val_ε(·) denotes the highest power of ϵ dividing it (= least one across monomials). E.g., $h = \epsilon^{-2}x_1 + \epsilon^{-1}x_2 + \epsilon x_3$. Then, val_ε(h) = -2.

□ Let $\Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i$, for $i \in [2]$, where $a_i := \operatorname{val}_{\epsilon} (\Phi(T_i))$. Then, (i) $\tilde{T}_i \in \mathbb{F}[\epsilon, \mathbf{x}, z]$, and (ii) $\lim_{\epsilon \to 0} \tilde{T}_2 =: t_2 \in \mathbb{F}[\mathbf{x}, z] \setminus \{0\}$, exists.

 \Box Divide both side by \tilde{T}_2 and take partial derivative with respect to z, to get:

$$\Phi(f) + \epsilon \cdot \Phi(S) = \Phi(T_1) + \Phi(T_2)$$

$$\implies \Phi(f)/\tilde{T}_2 + \epsilon \cdot \Phi(S)/\tilde{T}_2 = \Phi(T_1)/\tilde{T}_2 + \epsilon^{a_2}$$

$$\implies \partial_Z \left(\Phi(f)/\tilde{T}_2 \right) + \epsilon \cdot \partial_Z \left(\Phi(S)/\tilde{T}_2 \right) = \partial_Z \left(\Phi(T_1)/\tilde{T}_2 \right) =: g_1 . \quad (1)$$

 $\Box \lim_{\epsilon \to 0} g_1 = \lim_{\epsilon \to 0} \partial_z \left(\Phi(T_1) / \tilde{T}_2 \right) = \partial_z (\Phi(f) / t_2).$

□ First target: compute $\lim_{\epsilon \to 0} g_1 = \partial_z (\Phi(f)/t_2)$.

- □ First target: compute $\lim_{\epsilon \to 0} g_1 = \partial_z (\Phi(f)/t_2)$.
- □ Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$.

- □ First target: compute $\lim_{\epsilon \to 0} g_1 = \partial_z (\Phi(f)/t_2)$.
- □ Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$.
- $\Box \operatorname{dlog} \operatorname{linearizes} \operatorname{product:} \operatorname{dlog}(h_1h_2) = \operatorname{dlog}(h_1) + \operatorname{dlog}(h_2).$

- □ First target: compute $\lim_{\epsilon \to 0} g_1 = \partial_z (\Phi(f)/t_2)$.
- □ Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$.

□ dlog *linearizes* product: $dlog(h_1h_2) = dlog(h_1) + dlog(h_2)$. Note:

$$\begin{aligned} \partial_{Z} \left(\Phi(T_{1})/\tilde{T}_{2} \right) &= \Phi(T_{1})/\tilde{T}_{2} \cdot \operatorname{dlog} \left(\Phi(T_{1})/\tilde{T}_{2} \right) \\ &= \Phi(T_{1})/\tilde{T}_{2} \cdot \left(\operatorname{dlog}(\Phi(T_{1})) - \operatorname{dlog}(\tilde{T}_{2}) \right) \end{aligned}$$

- □ First target: compute $\lim_{\epsilon \to 0} g_1 = \partial_z (\Phi(f)/t_2)$.
- □ Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$.

□ dlog *linearizes* product: $dlog(h_1h_2) = dlog(h_1) + dlog(h_2)$. Note:

$$\begin{aligned} \partial_{z} \left(\Phi(T_{1})/\tilde{T}_{2} \right) &= \Phi(T_{1})/\tilde{T}_{2} \cdot \operatorname{dlog} \left(\Phi(T_{1})/\tilde{T}_{2} \right) \\ &= \Phi(T_{1})/\tilde{T}_{2} \cdot \left(\operatorname{dlog}(\Phi(T_{1})) - \operatorname{dlog}(\tilde{T}_{2}) \right) \end{aligned}$$

□ Both $\Phi(T_1)$ and \tilde{T}_2 have $\Pi\Sigma$ circuits (they have *z* and ϵ).

$$\begin{split} g_1 &= \partial_Z \left(\Phi(T_1) / \tilde{T}_2 \right) = \Phi(T_1) / \tilde{T}_2 \cdot \left(\text{dlog}(\Phi(T_1)) - \text{dlog}(\tilde{T}_2) \right) \\ &= \Pi \Sigma / \Pi \Sigma \cdot \left(\text{dlog}(\Pi \Sigma) - \text{dlog}(\Pi \Sigma) \right) \\ &= \Pi \Sigma / \Pi \Sigma \cdot \left(\sum \text{dlog}(\Sigma) \right). \end{split}$$

$$\begin{split} g_1 &= \partial_z \left(\Phi(T_1) / \tilde{T}_2 \right) = \Phi(T_1) / \tilde{T}_2 \cdot \left(\text{dlog}(\Phi(T_1)) - \text{dlog}(\tilde{T}_2) \right) \\ &= \Pi \Sigma / \Pi \Sigma \cdot \left(\text{dlog}(\Pi \Sigma) - \text{dlog}(\Pi \Sigma) \right) \\ &= \Pi \Sigma / \Pi \Sigma \cdot \left(\sum \text{dlog}(\Sigma) \right). \end{split}$$

$$\begin{split} g_1 &= \partial_z \left(\Phi(T_1) / \tilde{T}_2 \right) = \Phi(T_1) / \tilde{T}_2 \cdot \left(\mathsf{dlog}(\Phi(T_1)) - \mathsf{dlog}(\tilde{T}_2) \right) \\ &= \Pi \Sigma / \Pi \Sigma \cdot \left(\mathsf{dlog}(\Pi \Sigma) - \mathsf{dlog}(\Pi \Sigma) \right) \\ &= \Pi \Sigma / \Pi \Sigma \cdot \left(\sum \mathsf{dlog}(\Sigma) \right). \end{split}$$

 $\Box \text{ Recall: } \lim_{\epsilon \to 0} g_1 = \partial_z(\Phi(f)/t_2).$

$$\begin{split} g_1 &= \partial_z \left(\Phi(T_1) / \tilde{T}_2 \right) = \Phi(T_1) / \tilde{T}_2 \cdot \left(\mathsf{dlog}(\Phi(T_1)) - \mathsf{dlog}(\tilde{T}_2) \right) \\ &= \Pi \Sigma / \Pi \Sigma \cdot \left(\mathsf{dlog}(\Pi \Sigma) - \mathsf{dlog}(\Pi \Sigma) \right) \\ &= \Pi \Sigma / \Pi \Sigma \cdot \left(\sum \mathsf{dlog}(\Sigma) \right). \end{split}$$

 $\Box \text{ Recall: } \lim_{\epsilon \to 0} g_1 = \partial_z(\Phi(f)/t_2).$

 $\Box \ \deg(f) = d \implies \deg_Z(\Phi(f)) = d \implies \deg_Z(\partial_Z(\Phi(f))) = d - 1.$

$$\begin{split} g_1 &= \partial_Z \left(\Phi(T_1) / \tilde{T}_2 \right) = \Phi(T_1) / \tilde{T}_2 \cdot \left(\mathsf{dlog}(\Phi(T_1)) - \mathsf{dlog}(\tilde{T}_2) \right) \\ &= \Pi \Sigma / \Pi \Sigma \cdot \left(\mathsf{dlog}(\Pi \Sigma) - \mathsf{dlog}(\Pi \Sigma) \right) \\ &= \Pi \Sigma / \Pi \Sigma \cdot \left(\sum \mathsf{dlog}(\Sigma) \right). \end{split}$$

 $\Box \text{ Recall: } \lim_{\epsilon \to 0} g_1 = \partial_z(\Phi(f)/t_2).$

 $\Box \ \deg(f) = d \implies \deg_Z(\Phi(f)) = d \implies \deg_Z(\partial_Z(\Phi(f))) = d - 1.$

 \Box Suffices to compute $g_1 \mod z^d$ and take the limit!

U What is $dlog(\ell)$?

k = 2 proof: dlog strikes!

□ What is dlog(ℓ)? Note, $\ell =: A - z \cdot B$, where $A \in \mathbb{F}(\epsilon)^*, B \in \mathbb{F}(\epsilon)[\mathbf{x}]$.

□ What is dlog(ℓ)? Note, $\ell =: A - z \cdot B$, where $A \in \mathbb{F}(\epsilon)^*, B \in \mathbb{F}(\epsilon)[\mathbf{x}]$.

$$d\log(A - zB) = -\frac{B}{A(1 - z \cdot B/A)}$$
$$= -\frac{B}{A} \cdot \sum_{j=0}^{d-1} \left(\frac{z \cdot B}{A}\right)^{j}$$
$$\in \Sigma \land \Sigma . [Magic trick]$$

20

k = 2 proof: dlog strikes!

□ What is dlog(ℓ)? Note, $\ell =: A - z \cdot B$, where $A \in \mathbb{F}(\epsilon)^*, B \in \mathbb{F}(\epsilon)[\mathbf{x}]$.

$$d\log(A - zB) = -\frac{B}{A(1 - z \cdot B/A)}$$
$$= -\frac{B}{A} \cdot \sum_{j=0}^{d-1} \left(\frac{z \cdot B}{A}\right)^{j}$$
$$\in \Sigma \land \Sigma . [Magic trick]$$

□ Thus,

□ What is dlog(ℓ)? Note, $\ell =: A - z \cdot B$, where $A \in \mathbb{F}(\epsilon)^*, B \in \mathbb{F}(\epsilon)[\mathbf{x}]$.

$$d\log(A - zB) = -\frac{B}{A(1 - z \cdot B/A)}$$
$$= -\frac{B}{A} \cdot \sum_{j=0}^{d-1} \left(\frac{z \cdot B}{A}\right)^{j}$$
$$\in \Sigma \land \Sigma . [Magic trick]$$

□ Thus,

$$\begin{split} \lim_{\epsilon \to 0} g_1 \mod z^d &\equiv \lim_{\epsilon \to 0} \Pi \Sigma / \Pi \Sigma \cdot \left(\sum \mathsf{dlog}(\Sigma) \right) \mod z^d \\ &\equiv \lim_{\epsilon \to 0} (\Pi \Sigma / \Pi \Sigma) \cdot (\Sigma \wedge \Sigma) \mod z^d \\ &\in \overline{(\Pi \Sigma / \Pi \Sigma) \cdot (\Sigma \wedge \Sigma)} \mod z^d \,. \end{split}$$

 $\Box \ \overline{C \cdot \mathcal{D}} \subseteq \overline{C} \cdot \overline{\mathcal{D}}.$ Therefore,

 $\Box \ \overline{\mathcal{C} \cdot \mathcal{D}} \subseteq \overline{\mathcal{C}} \cdot \overline{\mathcal{D}}.$ Therefore,

 $\overline{(\Pi\Sigma/\Pi\Sigma)} \cdot (\Sigma \land \Sigma) \subseteq \overline{(\Pi\Sigma/\Pi\Sigma)} \cdot \overline{\Sigma \land \Sigma}$ $\subseteq (ABP/ABP) \cdot ABP$ = ABP/ABP .

 $\Box \ \overline{C \cdot \mathcal{D}} \subseteq \overline{C} \cdot \overline{\mathcal{D}}.$ Therefore,

 $\overline{(\Pi\Sigma/\Pi\Sigma) \cdot (\Sigma \land \Sigma)} \subseteq \overline{(\Pi\Sigma/\Pi\Sigma)} \cdot \overline{\Sigma \land \Sigma}$ $\subseteq (ABP/ABP) \cdot ABP$ = ABP/ABP .

□ Eliminate division, and integrate (interpolate wrt *z*) to get $\Phi(f)/t_2 = ABP \implies \Phi(f) = ABP \implies f = ABP.$

Proving Lower Bounds

 \Box Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?

- \Box Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?
 - > [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that $IMM_{n,d}$ with $d = o(\log n)$ requires $n^{\omega(1)}$ -size depth-3 circuits.

- \Box Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?
 - > [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that $\mathsf{IMM}_{n,d}$ with $d = o(\log n)$ requires $n^{\omega(1)}$ -size depth-3 circuits.
 - Rank-based lower bounds can be lifted in the border!

- \Box Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?
 - > [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that $\mathsf{IMM}_{n,d}$ with $d = o(\log n)$ requires $n^{\omega(1)}$ -size depth-3 circuits.
 - Rank-based lower bounds can be lifted in the border!
 - ➤ Since, $\mathsf{IMM}_{n,d} \in \mathsf{VBP}, \overline{\Sigma^{[k]} \Pi \Sigma} \neq \mathsf{VBP}.$

 \Box Can we show an *exponential* gap between $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?

 \Box Can we show an *exponential* gap between $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?

□ Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?

- \Box Can we show an *exponential* gap between $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?
- \Box Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?
- □ Note: This (impossibility) is already known in the classical setting!

- \Box Can we show an *exponential* gap between $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?
- \Box Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?
- □ Note: This (impossibility) is already known in the classical setting!
- $\Box x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!

- \Box Can we show an *exponential* gap between $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?
- \Box Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?
- □ Note: This (impossibility) is already known in the classical setting!

 $\Box x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!

□ Catch: $x_1 \cdot y_1 + \ldots + x_{k+1} \cdot \underline{y_{k+1}}$ does not work anymore in *border*, since, $x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1} \in \Sigma^{[2]} \Pi^{O(k)} \Sigma$!

- \Box Can we show an *exponential* gap between $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?
- □ Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?
- □ Note: This (impossibility) is already known in the classical setting!
- $\Box x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!
- □ Catch: $x_1 \cdot y_1 + \ldots + x_{k+1} \cdot \underline{y_{k+1}}$ does not work anymore in *border*, since, $x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1} \in \Sigma^{[2]} \Pi^{O(k)} \Sigma$!
- □ What does work (if at all!)?

Fix any constant $k \ge 1$. There is an explicit *n*-variate and < n degree polynomial *f* such that *f* can be computed by a $\sum^{[k+1]} \prod \sum$ circuit of size O(n);

Fix any constant $k \ge 1$. There is an explicit *n*-variate and < n degree polynomial *f* such that *f* can be computed by a $\Sigma^{[k+1]}\Pi\Sigma$ circuit of size O(n); but, *f* requires $2^{\Omega(n)}$ -size $\overline{\Sigma^{[k]}\Pi\Sigma}$ circuits.

□ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-*d* polynomial on n = 3d-variables.

Fix any constant $k \ge 1$. There is an explicit *n*-variate and < n degree polynomial *f* such that *f* can be computed by a $\Sigma^{[k+1]}\Pi\Sigma$ circuit of size O(n); but, *f* requires $2^{\Omega(n)}$ -size $\overline{\Sigma^{[k]}\Pi\Sigma}$ circuits.

□ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-*d* polynomial on n = 3d-variables.

 \square P_d has trivial fanin-3 depth-3 circuit (and hence in border too!).

- □ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-*d* polynomial on n = 3d-variables.
- \square P_d has trivial fanin-3 depth-3 circuit (and hence in border too!).
- \Box We will show that P_d requires $2^{\Omega(d)}$ -size $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits.

- □ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-*d* polynomial on n = 3d-variables.
- \square P_d has trivial fanin-3 depth-3 circuit (and hence in border too!).
- \Box We will show that P_d requires $2^{\Omega(d)}$ -size $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits.
- □ Kumar's proof establishes that P_d has a $2^{O(d)}$ -size $\Sigma^{[2]}\Pi\Sigma$ circuits, showing *optimality*!

- □ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-*d* polynomial on n = 3d-variables.
- \square P_d has trivial fanin-3 depth-3 circuit (and hence in border too!).
- \Box We will show that P_d requires $2^{\Omega(d)}$ -size $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits.
- □ Kumar's proof establishes that P_d has a $2^{O(d)}$ -size $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits, showing *optimality*!
- Classical is about *impossibility*. While, border is about *optimality*.

□ Recall the non-border lower bound proof, of making an ideal $I_k = \langle \ell_1, \dots, \ell_k \rangle$, such that $f \neq 0 \mod I_k$, but $\Sigma^{[k]} \Pi \Sigma = 0 \mod I_k$.

- □ Recall the non-border lower bound proof, of making an ideal $I_k = \langle \ell_1, \dots, \ell_k \rangle$, such that $f \neq 0 \mod I_k$, but $\Sigma^{[k]} \Pi \Sigma = 0 \mod I_k$.
- □ Let $\ell_1 := 1 + \epsilon x_1$. What does taking mod ℓ_1 in the 'border' ($\epsilon \to 0$) mean? Essentially we are eventually setting $x_1 = -1/\epsilon$ (and then $\epsilon \to 0$)!

- □ Recall the non-border lower bound proof, of making an ideal $I_k = \langle \ell_1, \dots, \ell_k \rangle$, such that $f \neq 0 \mod I_k$, but $\Sigma^{[k]} \Pi \Sigma = 0 \mod I_k$.
- □ Let $\ell_1 := 1 + \epsilon x_1$. What does taking mod ℓ_1 in the 'border' ($\epsilon \to 0$) mean? Essentially we are eventually setting $x_1 = -1/\epsilon$ (and then $\epsilon \to 0$)!
- □ In other words, work with $I := \langle \ell_1, \epsilon \rangle = \langle 1 \rangle$!

- □ Recall the non-border lower bound proof, of making an ideal $I_k = \langle \ell_1, \dots, \ell_k \rangle$, such that $f \neq 0 \mod I_k$, but $\Sigma^{[k]} \Pi \Sigma = 0 \mod I_k$.
- □ Let $\ell_1 := 1 + \epsilon x_1$. What does taking mod ℓ_1 in the 'border' ($\epsilon \to 0$) mean? Essentially we are eventually setting $x_1 = -1/\epsilon$ (and then $\epsilon \to 0$)!
- □ In other words, work with $I := \langle \ell_1, \epsilon \rangle = \langle 1 \rangle$!
- □ Lesson: Taking mod blindly fails *miserably*!

- □ Recall the non-border lower bound proof, of making an ideal $I_k = \langle \ell_1, \dots, \ell_k \rangle$, such that $f \neq 0 \mod I_k$, but $\Sigma^{[k]} \Pi \Sigma = 0 \mod I_k$.
- □ Let $\ell_1 := 1 + \epsilon x_1$. What does taking mod ℓ_1 in the 'border' ($\epsilon \to 0$) mean? Essentially we are eventually setting $x_1 = -1/\epsilon$ (and then $\epsilon \to 0$)!
- □ In other words, work with $I := \langle \ell_1, \epsilon \rangle = \langle 1 \rangle$!
- □ Lesson: Taking mod blindly fails *miserably*!

□ The worst case:

 $f+\epsilon S = T_1+T_2\,,$

where T_i has each linear factor of the form $1 + \epsilon \ell!$

□ Three cases to consider:

≻ Case I: Each T_1 and T_2 has one linear polynomial $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$ as a factor, whose ϵ -free term is a linear form. Example: $\ell = (1 + \epsilon)x_1 + \epsilon x_2$,

- ➤ Case I: Each T_1 and T_2 has one linear polynomial $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$ as a factor, whose ϵ -free term is a linear form. Example: $\ell = (1 + \epsilon)x_1 + \epsilon x_2$,
- > <u>Case II</u> (intermediate): T_1 has one homogeneous factor (say ℓ_1) and ϵ -free part of all factors in T_2 are non-homogeneous (in **x**). Non-homogeneous example: $(1 + \epsilon) + \epsilon x_1$.

- ➤ Case I: Each T_1 and T_2 has one linear polynomial $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$ as a factor, whose ϵ -free term is a linear form. Example: $\ell = (1 + \epsilon)x_1 + \epsilon x_2$,
- > <u>Case II</u> (intermediate): T_1 has one homogeneous factor (say ℓ_1) and ϵ -free part of all factors in T_2 are non-homogeneous (in **x**). Non-homogeneous example: $(1 + \epsilon) + \epsilon x_1$.
- > Case III (all-non-homogeneous): Each T_i has all the linear polynomial factors whose ϵ -free part is non-homogeneous.

- ➤ Case I: Each T_1 and T_2 has one linear polynomial $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$ as a factor, whose ϵ -free term is a linear form. Example: $\ell = (1 + \epsilon)x_1 + \epsilon x_2$,
- > <u>Case II</u> (intermediate): T_1 has one homogeneous factor (say ℓ_1) and ϵ -free part of all factors in T_2 are non-homogeneous (in **x**). Non-homogeneous example: $(1 + \epsilon) + \epsilon x_1$.
- > Case III (all-non-homogeneous): Each T_i has all the linear polynomial factors whose ϵ -free part is non-homogeneous.
- □ For the first case, take $I := \langle \ell_1, \ell_2, \epsilon \rangle \implies 1 \notin I$ and show that $x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d = P_d \mod I \neq 0$, while RHS circuit $\equiv 0 \mod I$.

- ➤ Case I: Each T_1 and T_2 has one linear polynomial $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$ as a factor, whose ϵ -free term is a linear form. Example: $\ell = (1 + \epsilon)x_1 + \epsilon x_2$,
- > <u>Case II</u> (intermediate): T_1 has one homogeneous factor (say ℓ_1) and ϵ -free part of all factors in T_2 are non-homogeneous (in **x**). Non-homogeneous example: $(1 + \epsilon) + \epsilon x_1$.
- > Case III (all-non-homogeneous): Each T_i has all the linear polynomial factors whose ϵ -free part is non-homogeneous.
- □ For the first case, take $I := \langle \ell_1, \ell_2, \epsilon \rangle (\Rightarrow 1 \notin I)$ and show that $x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d = P_d \mod I \neq 0$, while RHS circuit $\equiv 0 \mod I$.
- □ For the second case, take $I := \langle \ell_1, \epsilon \rangle$. Then, RHS mod $I \in \overline{\Pi\Sigma} = \Pi\Sigma$, while $P_d \mod I \notin \Pi\Sigma$.

- ➤ Case I: Each T_1 and T_2 has one linear polynomial $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$ as a factor, whose ϵ -free term is a linear form. Example: $\ell = (1 + \epsilon)x_1 + \epsilon x_2$,
- > <u>Case II</u> (intermediate): T_1 has one homogeneous factor (say ℓ_1) and ϵ -free part of all factors in T_2 are non-homogeneous (in **x**). Non-homogeneous example: $(1 + \epsilon) + \epsilon x_1$.
- > Case III (all-non-homogeneous): Each T_i has all the linear polynomial factors whose ϵ -free part is non-homogeneous.
- □ For the first case, take $I := \langle \ell_1, \ell_2, \epsilon \rangle \implies 1 \notin I$ and show that $x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d = P_d \mod I \neq 0$, while RHS circuit $\equiv 0 \mod I$.
- □ For the second case, take $I := \langle \ell_1, \epsilon \rangle$. Then, RHS mod $I \in \overline{\Pi\Sigma} = \Pi\Sigma$, while $P_d \mod I \notin \Pi\Sigma$.
- □ So, all-non-homogeneous is all we have to handle!

 \Box Use DiDIL with the (different) map $\Phi : \mathbf{x} \mapsto \mathbf{z}\mathbf{x}$.

 \Box Use DiDIL with the (different) map $\Phi : \mathbf{x} \mapsto \mathbf{z}\mathbf{x}$.

DiDIL shows:

$$\partial_{z}(z^{d}P_{d}/t_{2}) = \lim_{\epsilon \to 0} g_{1} \in \overline{(\Pi\Sigma/\Pi\Sigma)} \cdot \overline{(\Sigma \wedge \Sigma)}$$

 \Box Use DiDIL with the (different) map $\Phi : \mathbf{x} \mapsto \mathbf{z}\mathbf{x}$.

□ DiDIL shows:

$$\partial_{z}(z^{d}P_{d}/t_{2}) = \lim_{\epsilon \to 0} g_{1} \in \overline{(\Pi\Sigma/\Pi\Sigma)} \cdot \overline{(\Sigma \wedge \Sigma)}$$

□ Use the minimum power of *z* to show that $P_d \in \overline{\Sigma^s \land \Sigma}$.

 \Box Use DiDIL with the (different) map $\Phi : \mathbf{x} \mapsto \mathbf{z}\mathbf{x}$.

□ DiDIL shows:

$$\partial_{z}(z^{d}P_{d}/t_{2}) = \lim_{\epsilon \to 0} g_{1} \in \overline{(\Pi\Sigma/\Pi\Sigma)} \cdot \overline{(\Sigma \wedge \Sigma)}$$

□ Use the minimum power of *z* to show that $P_d \in \overline{\Sigma^s \land \Sigma}$.

□ Partial-derivative measure shows that the above implies $s \ge 2^{\Omega(d)}$!

Conclusion

□ ROABP core gives us many PIT results (see our two papers).

□ ROABP core gives us many PIT results (see our two papers).

 $\Box \quad \text{Can we show } \overline{\Sigma^{[k]}\Pi\Sigma} \subseteq \Sigma\Pi\Sigma \text{ (resp. VF)}?$

- □ ROABP core gives us many PIT results (see our two papers).
- $\Box \text{ Can we show } \overline{\Sigma^{[k]}\Pi\Sigma} \subseteq \Sigma\Pi\Sigma \text{ (resp. VF)}?$
- Can we extend the hierarchy theorem to bounded (top & bottom fanin) depth-4 circuits? i.e., for a *fixed* constant δ, is

 $\overline{\Sigma^{[1]}\Pi\Sigma\Pi^{[\delta]}} \subsetneq \overline{\Sigma^{[2]}\Pi\Sigma\Pi^{[\delta]}} \subsetneq \overline{\Sigma^{[3]}\Pi\Sigma\Pi^{[\delta]}} \cdots,$

where the respective gaps are exponential? Clearly, $\delta = 1$ holds, from this work.

- □ ROABP core gives us many PIT results (see our two papers).
- $\Box \text{ Can we show } \overline{\Sigma^{[k]}\Pi\Sigma} \subseteq \Sigma\Pi\Sigma \text{ (resp. VF)}?$
- Can we extend the hierarchy theorem to bounded (top & bottom fanin) depth-4 circuits? i.e., for a *fixed* constant δ, is

 $\overline{\Sigma^{[1]}\Pi\Sigma\Pi^{[\delta]}} \subsetneq \overline{\Sigma^{[2]}\Pi\Sigma\Pi^{[\delta]}} \subsetneq \overline{\Sigma^{[3]}\Pi\Sigma\Pi^{[\delta]}} \cdots,$

where the respective gaps are exponential? Clearly, $\delta = 1$ holds, from this work.

Thank you! Questions?