Points, lines and polynomial identities

Amir Shpilka
Tel Aviv University

Outline

- Points and lines: Sylvester-Gallai theorem and relatives
- Applications:
- Locally correctable codes
- Algebraic identity testing (aka polynomial identity testing)
- Higher degree analog
- Proof sketch

Point-line incidences

Main theme: Given a collection of points and lines satisfying certain properties, bound some combinatorial measure (number of incidences, number of lines, number of points,...)

Many results and conjectures: Szemeredi-Trotter, Guth-Katz (Erdös distinct distance problem), Kakeya,...

This talk: Sylvester-Gallai theorem and relatives

Sylvester-Gallai theorem

Conjectured by Sylvester'93 and Erdös'43, proved by Melchior'41 and Gallai'44:

- A finite set of points $P \subseteq \mathbb{R}^{2}$
- Any line through any two points in P meets a $3^{\text {rd }}$ point in P (special line)
\Rightarrow Points are colinear (dim(affine-span P) $=1$)

Proof

Let p and ℓ be the closest point-line pair (line that passes through at least 3 points)

Important: P finite (otherwise $\mathrm{P}=\mathbb{R}^{2}$), over \mathbb{R} Same proof for $\mathrm{P} \subseteq \mathbb{R}^{\mathrm{n}}$

Some important relatives

[Kelly'86]: Over \mathbb{C}, same condition $\Rightarrow \operatorname{dim}$ (affine-span P) ≤ 2
[Edelstein-Kelly'66]: Colorful version: $\mathrm{P}=\mathrm{R} ப G \sqcup B$
Every non-monochromatic line contains all 3 colors
$\Rightarrow \operatorname{dim}($ affine-span $P) \leq 3$
[Barak-Dvir-Wigderson-Yehudayoff'11, Dvir-Saraf-Wigderson'12]: Robust version:

Special lines through every $p \in P$ cover δ-fraction of P
$\Rightarrow \operatorname{dim}$ (affine-span P) $\leq \mathrm{O}(1 / \delta)$

Algebraic/Dual rephrasing

Finite set of homogeneous linear equations:
$\left\{L_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, L_{m}\left(x_{1}, \ldots, x_{n}\right)\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
Any solution to any two equations also solves a $3^{\text {rd }}$ equation
$\Rightarrow \operatorname{dim}\left(\operatorname{span}\left\{L_{i}\right\}\right) \leq 2\left(\right.$ over $\left.\mathbb{C}: \operatorname{dim}\left(\operatorname{span}\left\{L_{i}\right\}\right) \leq 3\right)$

Reduction:

Linear equation $L:\langle v, x\rangle=0 \leftrightarrow \operatorname{span}\{v\}$ in \mathbb{R}^{n}
H a hyperplane in general position point corresponding to L : $p_{L}=\operatorname{span}\{v\} \cap H$
$L_{3} \in \operatorname{span}\left(L_{1}, L_{2}\right) \Leftrightarrow p_{1}, p_{2}, p_{3}$ colinear

Applications

[Dvir-S'05]: SG-type theorem relevant for:

- Locally Correctable Codes (LCCs)
- Polynomial Identity Testing (PIT) of depth-3 circuits
[Beecken-Mittmann-Saxena'13, Gupta'14]:
Higher degree version of SG type theorems relevant for PIT of depth-4 circuits

Error correcting codes

message x
$\underset{\text { Enc }(x)}{\substack{\text { Ehannel }}} \begin{gathered}\text { Decoder: } \\ \text { Dn errors }\end{gathered}$

- Many applications in practice (communication, storage) and theory (PCP, crypto,...)
- Typical goals: minimize overhead (i.e. higher rate $|x| /|E n c(x)|)$, decoding from a large fraction of errors (higher δ), efficient decoding

Locally correctable codes

message x

Enc(x)

$\mathrm{q}=2$ queries

Enc(x) ${ }_{i}$

w.h.p.

סn errors

- Locality: super efficient local correction. Is it achievable?
- Assume: Enc is a linear map $\operatorname{Enc}(\mathrm{x})_{\mathrm{i}}=\mathrm{L}_{\mathrm{i}}(\mathrm{x})$
- If L_{i} can be recovered from $\mathrm{L}_{\mathrm{j}}, \mathrm{L}_{\mathrm{k}}$ then they satisfy the SG property
- High probability decoding \Rightarrow many colinear triplets
- (robust) SG theorem $\Rightarrow \operatorname{Dim}\left(\right.$ span $\left.\mathrm{L}_{\mathrm{i}}\right)=s m a l l \Rightarrow$ Rate is zero

Polynomial identity testing (PIT)

Model: algebraic circuits (computations using,$+ \times$)
Challenge: Given algebraic circuit C decide $C(x)=0$?
Efficient Randomized algorithm [Schwartz'80, Zippel'79, DeMillo-Lipton'78]

Goal: A proof. I.e., a deterministic algorithm

Motivation:

- Primality testing [Agrawal-Kayal-Saxena'02]
- Parallel algorithms for finding perfect matching [Karp-Upfal-Wigderson'85, Mulmuley-Vazirani-Vazirani'87]
- Efficient deterministic algorithms implies lower bounds [KabanetsImpagliazzo'03]

Identity testing of depth-3 algebraic circuits

Example: Let $\omega^{\mathrm{d}}=1$ is the following true:

$$
\begin{gathered}
\prod_{i=1 \ldots d}\left(3 \omega^{5} X+\left(2 \omega^{5}-5 \omega^{i}\right) Y-6 \omega^{i} Z\right)+ \\
\prod_{i=1 \ldots d}\left(-2 \omega^{i} X+\left(3 \omega^{i}+5\right) Y+\left(6-5 \omega^{i}\right) Z\right)+ \\
\left.\prod_{i=1 . . . d}\left(2 \omega^{2-3} 3 \omega^{i}\right) X-\left(3 \omega^{i}+2 \omega^{i}\right) Y+5 \omega^{2} Z\right)=? ~
\end{gathered}
$$

Solution: Let

$$
\begin{aligned}
& U=3 X+2 Y \\
& V=5 X+6 Z \\
& W=2 X-3 Y+5 Z
\end{aligned}
$$

After simple manipulation:

$$
\Pi\left(U-\omega^{i} V\right)+\Pi\left(V-\omega^{i} W\right)+\Pi\left(W-\omega^{i} U\right)=\left(U^{d}-V^{d}\right)+\left(V^{d}-W^{d}\right)+\left(W^{d}-U^{d}\right)=0
$$

Identity testing of $\Sigma \Pi \Sigma$ circuits

Let $A=\Pi a_{i}, B=\Pi b_{i}, C=\Pi c_{i}, a_{i}, b_{i}, c_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ linear forms
Decide whether $A+B+C=0$
First nontrivial case ($A+B=0$ verified by unique factorization)
[Dvir-S'05]: If we set $a_{i}=b_{j}=0$ then $\exists k$ such that $c_{k}=0$, can use colorful SG [Kayal-Saraf'09]: If $A+B+\ldots+M=0$ then (morally) $\operatorname{dim}\left(\left\{a_{i}\right\},\left\{b_{i}\right\}, \ldots,\left\{m_{i}\right\}\right)=m^{0(m)}$ PIT algorithm: Find basis, expand and verify identity in $\mathrm{O}(1)$ variables
[Saxena-Seshadhri'11]: BB-PIT for m summands in $\mathrm{n}^{\mathrm{O}(\mathrm{m})}$ time (any field) [Gupta-Kamath-Kayal-Saptharishi'13]: PIT for $\sum \Pi \Sigma$ (unbounded degree)
\Rightarrow PIT for general circuits

Identity testing of $\sum^{[3]} \Pi \Sigma \Pi$ circuits

Let $A=\Pi a_{i}, B=\Pi b_{i}, C=\Pi c_{i}, a_{i}, b_{i}, c_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ degree d polynomials
Decide whether $\mathrm{A}+\mathrm{B}+\mathrm{C}=0$
Theorem[Agrawal-Vinay'08] : PIT for homogeneous depth-4 \Rightarrow PIT for general circuits
Conjecture [Beecken-Mittmann-Saxena'13, Gupta'14]:
If $A+B+C=0$ disjoint then algebraic-rank $\left(\left\{a_{i}\right\},\left\{b_{i}\right\},\left\{c_{i}\right\}\right)=O(1)$
Intuition: If we set $a_{i}=b_{j}=0$ then there is some k such that $c_{k}=0$.
Need degree d Edelstein-Kelly theorem (colorful degree d SG)
Example: $a=x y+z w, b=x y-z w, c_{1} \cdot c_{2} \cdot c_{3} \cdot c_{4}=(x+z)(x+w)(y+z)(y+w)$
Problem: Product vanishes when $a=b=0$ but not always the same c_{k}

Our results

Higher degree SG type theorems

$A=\left\{a_{i}\right\}$ quadratic polynomials

- For every a_{i}, a_{j} there is a_{k} that vanishes whenever a_{i} and a_{j} do

$$
\begin{aligned}
{\left[S^{\prime} 19\right] } & \Rightarrow \operatorname{dim}\left(\left\{a_{i}\right\}\right)=O(1) \\
& \text { if } A=R \sqcup G \sqcup B \ldots \Rightarrow \operatorname{dim}\left(\left\{a_{i}\right\}\right)=O(1)
\end{aligned}
$$

- For every a_{i}, a_{j} whenever a_{i} and a_{j} vanish then so does $\prod_{k \neq i, j} a_{k}$ [Peleg-S'20] $\Rightarrow \operatorname{dim}\left(\left\{a_{i}\right\}\right)=O(1)$
- $A=\Pi a_{i}, B=\Pi b_{i}, C=\Pi c_{i}$, quadratic polynomials
[Peleg-S'21] If $A+B+C=0$ disjoint (wlog) then $\operatorname{dim}\left(\left\{a_{i}\right\},\left\{b_{i}\right\},\left\{c_{i}\right\}\right)=O(1)$ (via colorful version of [Peleg-S'20])
Answers [Beecken-Mittmann-Saxena'13, Gupta'14] for degree d=2

Proof ingredients

Main tool I: Algebraic Structure Theorem

Theorem[S'19,Peleg-S'20]: $\mathrm{Q}_{1}, \mathrm{Q}_{2},\left\{\mathrm{P}_{\mathrm{i}}\right\}$ quadratics s.t. $\mathrm{Q}_{1}(\mathrm{v})=\mathrm{Q}_{2}(\mathrm{v})=0 \Rightarrow \Pi \mathrm{P}_{\mathrm{i}}(\mathrm{v})=0$
Then one of the following cases must hold:

1. Some P_{i} is in the linear span of Q_{1}, Q_{2}
2. \exists linear functions ℓ_{1}, ℓ_{2} s.t. $\ell_{1} \ell_{2} \in \operatorname{span}\left\{Q_{1}, Q_{2}\right\}$
3. \exists linear functions ℓ_{1}, ℓ_{2} s.t. $Q_{1}=Q_{2}=0$ modulo ℓ_{1}, ℓ_{2}

Examples:

2. $\mathrm{Q}_{2}=\mathrm{Q}_{1}+\ell \ell^{\prime}, \mathrm{P}_{1}=\left(\mathrm{Q}_{1}+\ell \ell_{1}\right) \mathrm{P}_{2}=\left(\mathrm{Q}_{1}+\ell^{\prime} \ell_{2}\right)$
3. $Q_{1}=x a+y b, Q_{2}=x c+y d, P_{1}=(a d-b c), P_{2}=x, P_{3}=y$

Proof idea: Analyzing how the resultant of $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ factorizes
Different cases roughly correspond to different degrees of factors

Main tool II: Robust version of E-K theorem

Recall [Edelstein-Kelly'66]: Colorful version: $P=R \pm G \pm B$
Every non-monochromatic line contains all 3 colors
$\Rightarrow \operatorname{dim}$ (affine-span P) ≤ 3

Robust-EK-Thm [S'19]: P= RபGபB s.t. every point in one set spans with a δ-fraction of points in the other two sets a point in the third set
$\Rightarrow \operatorname{dim}($ affine-span $P)=O\left(1 / \delta^{3}\right)$

Remark: probably not tight

(rough) Proof outline of [S'19,Peleg-S'20,Peleg-S'21]

Use the algebraic structure theorem to argue that either

- Coefficient vectors of quadratic polynomials satisfy the robustSG/EK theorem (and we are done), or
- Each quadratic is a function of a few linear functions
- Then show that these linear functions satisfy the conditions of the robust-SG/EK theorem themselves
Intuition: If (vector of coefficients of) a polynomial Q is on many special
lines, then Q has a very restricted structure
Actual proofs: A lot of case analysis

Follow up and related work

SG:

- [de Oliveira-Sengupta'22]: SG for cubic polynomials (for every two cubics there exists a third...) by extension of structure theorem to cubics
- [Peleg-S'22,Garg-de Oliveira-Sengupta'22]: Robust Quadratic-SG theorem (for every Q_{i}, for δ-fraction of Q_{j}, there exists a $\mathrm{Q}_{k} \ldots$)
PIT:
- [Limaye-Srinivasan-Tavenas'21]: $\mathrm{n}^{\mathrm{n} \mathrm{\varepsilon}}$ PIT for bounded depth circuits
- [Dutta-Dwivedi-Saxena'21]: Quasi-polynomial time BB PIT for $\Sigma^{[0(1)]} \Pi \Sigma \Pi^{[\log (n) 0(1)]}$ using a different techniques

Conclusion

Saw applications of problems in discrete geometry in

- Locally correctable codes
- Verifying algebraic identities

Saw generalization to algebra-geometric questions that are also relevant for identity testing

Many open questions - higher degrees, more sets,...

Thank You!

