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Outline

• Points and lines: Sylvester-Gallai theorem and relatives

• Applications:

• Locally correctable codes

• Algebraic identity testing (aka polynomial identity testing)

• Higher degree analog

• Proof sketch



Point-line incidences

Main theme: Given a collection of points and lines satisfying certain 
properties, bound some combinatorial measure (number of incidences, 
number of lines, number of points,…)

Many results and conjectures: Szemeredi-Trotter, Guth-Katz (Erdös
distinct distance problem), Kakeya,…

This talk: Sylvester-Gallai theorem and relatives



Sylvester-Gallai theorem

Conjectured by Sylvester'93 and Erdös'43, proved by Melchior'41 and 
Gallai'44:

• A finite set of points P⊆ℝ2

• Any line through any two points in P meets a 3rd point in P 
(special line)

⟹ Points are colinear (dim(affine-span P)=1)



Proof

Let p and 𝓁 be the closest point-line pair (line that passes through at 
least 3 points)

Important: P finite (otherwise P=ℝ2), over ℝ

Same proof for P⊆ℝn

d
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𝓁

p



Some important relatives

[Kelly'86]: Over ℂ , same condition ⟹ dim(affine-span P) ≤ 2

[Edelstein-Kelly'66]: Colorful version: P=R⊔G⊔B
Every non-monochromatic line contains all 3 colors

⟹ dim(affine-span P) ≤ 3

[Barak-Dvir-Wigderson-Yehudayoff'11, Dvir-Saraf-Wigderson'12]: 
Robust version:

Special lines through every p∊P cover δ-fraction of P

⟹ dim(affine-span P) ≤ O(1/δ)



Algebraic/Dual rephrasing

Finite set of homogeneous linear equations: 
{L1(x1,…,xn),…,Lm(x1,…,xn)}⊆ℝ[x1,…,xn] 

Any solution to any two equations also solves a 3rd equation

⟹ dim(span{Li})≤2 (over ℂ: dim(span{Li})≤3)

Reduction: 
Linear equation L: 〈v,x〉=0  ↔︎ span{v} in ℝn

H a hyperplane in general position
point corresponding to L : pL = span{v}∩H
L3 ∊ span(L1,L2) ⟺ p1,p2,p3 colinear



Applications

[Dvir-S'05]: SG-type theorem relevant for:

• Locally Correctable Codes (LCCs)

• Polynomial Identity Testing (PIT) of depth-3 circuits

[Beecken-Mittmann-Saxena'13, Gupta'14]: 

Higher degree version of SG type theorems relevant for PIT of depth-4 
circuits



Error correcting codes

• Many applications in practice (communication, storage) and theory 
(PCP, crypto,…)

• Typical goals: minimize overhead (i.e. higher rate |x|/|Enc(x)|), 
decoding from a large fraction of errors (higher δ), efficient decoding 

message x

Encoder:
x⟼Enc(x)

Enc(x)

Noisy 
channel

y

Decoder:
Dec(y)=x

x

δn errors



Locally correctable codes

• Locality: super efficient local correction. Is it achievable?

• Assume: Enc is a linear map Enc(x)i=Li(x)

• If Li can be recovered from Lj,Lk then they satisfy the SG property 

• High probability decoding ⟹ many colinear triplets

• (robust) SG theorem ⟹ Dim(span Li)=small ⟹ Rate is zero

message x

Encoder:
x⟼Enc(x)

Enc(x)

Noisy 
channel

y

Decoder
Enc(x)i

δn errors

i

q=2 queries w.h.p.
i



Polynomial identity testing (PIT)
Model: algebraic circuits (computations using +,×)

Challenge: Given algebraic circuit C decide C(x)=0?

Efficient Randomized algorithm [Schwartz'80,
Zippel'79, DeMillo-Lipton’78]

Goal: A proof. I.e., a deterministic algorithm

Motivation:

• Primality testing [Agrawal-Kayal-Saxena'02]

• Parallel algorithms for finding perfect matching [Karp-Upfal-Wigderson'85, 
Mulmuley-Vazirani-Vazirani'87]

• Efficient deterministic algorithms implies lower bounds [Kabanets-
Impagliazzo'03]



Identity testing of depth-3 algebraic circuits

Example: Let ωd=1 is the following true:

∏i=1…d(3ω5X+(2ω5-5ωi)Y-6ωiZ) + 

∏i=1…d(-2ωiX+(3ωi+5)Y+(6-5ωi)Z) + 

∏i=1…d((2ω2-3ωi)X-(3ωi+2ωi)Y+5ω2Z) =? 0

Solution: Let

U= 3X+2Y

V=5X+6Z

W=2X-3Y+5Z 

After simple manipulation: 

∏(U-ωiV) + ∏(V-ωiW) + ∏(W-ωiU) = (Ud-Vd) + (Vd-Wd) + (Wd-Ud) = 0



Identity testing of ∑∏∑ circuits

Let A=∏ai, B=∏bi, C=∏ci , ai,bi,ci ∊ ℝ[x1,…,xn] linear forms 

Decide whether A+B+C=0

First nontrivial case (A+B=0 verified by unique factorization)

[Dvir-S'05]: If we set ai=bj=0 then ∃k such that ck=0, can use colorful SG

[Kayal-Saraf'09]: If A+B+…+M=0 then (morally) dim({ai},{bi},…,{mi})=mO(m)

PIT algorithm: Find basis, expand and verify identity in O(1) variables

[Saxena-Seshadhri'11]: BB-PIT for m summands in nO(m) time (any field)

[Gupta-Kamath-Kayal-Saptharishi'13]: PIT for ∑∏∑ (unbounded degree) 
⟹ PIT for general circuits



Identity testing of ∑[3]∏∑∏ circuits

Let A=∏ai, B=∏bi, C=∏ci , ai,bi,ci ∊ ℝ[x1,…,xn] degree d polynomials

Decide whether A+B+C=0

Theorem[Agrawal-Vinay'08] : PIT for homogeneous depth-4 ⟹ PIT for 
general circuits

Conjecture [Beecken-Mittmann-Saxena'13, Gupta'14]: 
If A+B+C=0 disjoint then algebraic-rank({ai},{bi},{ci})=O(1)

Intuition: If we set ai=bj=0 then there is some k such that ck=0. 
Need degree d Edelstein-Kelly theorem (colorful degree d SG)

Example: a=xy+zw, b=xy-zw, c1∙c2∙c3∙c4 = (x+z)(x+w)(y+z)(y+w)

Problem: Product vanishes when a=b=0 but not always the same ck



Our results



Higher degree SG type theorems

A={ai} quadratic polynomials

• For every ai,aj there is ak that vanishes whenever ai and aj do 

[S'19] ⇒ dim({ai})=O(1)

if A=R⊔G⊔B … ⇒ dim({ai})=O(1)

• For every ai,aj whenever ai and aj vanish then so does ∏k≠i,jak

[Peleg-S'20] ⇒ dim({ai})=O(1)

• A=∏ai, B=∏bi, C=∏ci , quadratic polynomials

[Peleg-S'21] If A+B+C=0 disjoint (wlog) then dim({ai},{bi},{ci})=O(1)
(via colorful version of [Peleg-S'20])

Answers [Beecken-Mittmann-Saxena'13, Gupta'14] for degree d=2



Proof ingredients



Main tool I: Algebraic Structure Theorem

Theorem[S'19,Peleg-S'20]:  Q1,Q2,{Pi} quadratics s.t. Q1(v)=Q2(v)=0 ⟹ ∏Pi(v)=0

Then one of the following cases must hold:

1. Some Pi is in the linear span of Q1, Q2

2. ∃ linear functions 𝓁1,𝓁2 s.t. 𝓁1𝓁2 ∊ span{Q1, Q2}

3. ∃ linear functions 𝓁1,𝓁2 s.t. Q1 = Q2 = 0 modulo 𝓁1,𝓁2

Examples:

2. Q2 = Q1 + 𝓁𝓁’, P1 = (Q1 + 𝓁𝓁1) P2 = (Q1 + 𝓁’𝓁2)

3. Q1 = xa+yb, Q2=xc+yd,  P1 = (ad-bc), P2 = x , P3 = y

Proof idea:  Analyzing how the resultant of Q1,Q2 factorizes
Different cases roughly correspond to different degrees of factors



Main tool II: Robust version of E-K theorem

Recall [Edelstein-Kelly'66]: Colorful version: P=R⊔G⊔B

Every non-monochromatic line contains all 3 colors

⟹ dim(affine-span P) ≤ 3

Robust-EK-Thm [S'19]: P= R⊔G⊔B s.t. every point in one set spans with 
a δ-fraction of points in the other two sets a point in the third set

⟹ dim(affine-span P) = O(1/δ3) 

Remark: probably not tight



(rough) Proof outline of [S'19,Peleg-S'20,Peleg-S'21]

Use the algebraic structure theorem to argue that either

• Coefficient vectors of quadratic polynomials satisfy the robust-
SG/EK theorem (and we are done), or 

• Each quadratic is a function of a few linear functions 

• Then show that these linear functions satisfy the conditions of the 
robust-SG/EK theorem themselves

Intuition: If (vector of coefficients of) a polynomial Q is on many special
lines, then Q has a very restricted structure

Actual proofs: A lot of case analysis



Follow up and related work

SG:

• [de Oliveira-Sengupta'22]: SG for cubic polynomials (for every two 
cubics there exists a third…) by extension of structure theorem to 
cubics

• [Peleg-S'22,Garg-de Oliveira-Sengupta'22]: Robust Quadratic-SG 
theorem (for every Qi, for δ-fraction of Qj, there exists a Qk …)

PIT:

• [Limaye-Srinivasan-Tavenas'21]: nnε PIT for bounded depth circuits

• [Dutta-Dwivedi-Saxena'21]: Quasi-polynomial time BB PIT for 
∑[O(1)]∏∑∏[log(n)O(1)] using a different techniques



Conclusion

Saw applications of problems in discrete geometry in

• Locally correctable codes

• Verifying algebraic identities

Saw generalization to algebra-geometric questions that are also 

relevant for identity testing

Many open questions – higher degrees, more sets,…

Thank You!
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