Points, lines and polynomial identities

Amir Shpilka

Tel Aviv University

Outline

- Points and lines: Sylvester-Gallai theorem and relatives
- Applications:
 - Locally correctable codes
 - Algebraic identity testing (aka polynomial identity testing)
- Higher degree analog
- Proof sketch

Point-line incidences

Main theme: Given a collection of points and lines satisfying certain properties, bound some combinatorial measure (number of incidences, number of lines, number of points,...)

Many results and conjectures: Szemeredi-Trotter, Guth-Katz (Erdös distinct distance problem), Kakeya,...

This talk: Sylvester-Gallai theorem and relatives

Sylvester-Gallai theorem

Conjectured by Sylvester'93 and Erdös'43, proved by Melchior'41 and Gallai'44:

- A finite set of points $P{\subseteq}\mathbb{R}^2$
- Any line through any two points in P meets a 3rd point in P (special line)
- \Rightarrow Points are colinear (dim(affine-span P)=1)

Let p and ℓ be the closest point-line pair (line that passes through at least 3 points)

Important: P finite (otherwise $P=\mathbb{R}^2$), over \mathbb{R} Same proof for $P\subseteq\mathbb{R}^n$

Some important relatives

[Kelly'86]: Over \mathbb{C} , same condition \Rightarrow dim(affine-span P) ≤ 2

[Edelstein-Kelly'66]: Colorful version: $P=R \sqcup G \sqcup B$ Every non-monochromatic line contains all 3 colors ⇒ dim(affine-span P) ≤ 3

[Barak-Dvir-Wigderson-Yehudayoff'11, Dvir-Saraf-Wigderson'12]: Robust version:

Special lines through every $p \in P$ cover δ -fraction of P

 \Rightarrow dim(affine-span P) $\leq O(1/\delta)$

Algebraic/Dual rephrasing

Finite set of homogeneous linear equations:

 $\{L_1(x_1,...,x_n),...,L_m(x_1,...,x_n)\} \subseteq \mathbb{R}[x_1,...,x_n]$

Any solution to any two equations also solves a 3rd equation

 \implies dim(span{L_i}) \leq 2 (over \mathbb{C} : dim(span{L_i}) \leq 3)

Reduction:

Linear equation L: $\langle v,x \rangle = 0 \iff \text{span}\{v\}$ in \mathbb{R}^n H a hyperplane in general position point corresponding to L : $p_L = \text{span}\{v\} \cap H$ $L_3 \in \text{span}(L_1,L_2) \iff p_1,p_2,p_3$ colinear

Applications

[Dvir-S'05]: SG-type theorem relevant for:

- Locally Correctable Codes (LCCs)
- Polynomial Identity Testing (PIT) of depth-3 circuits

[Beecken-Mittmann-Saxena'13, Gupta'14]:

Higher degree version of SG type theorems relevant for PIT of depth-4 circuits

Error correcting codes

- Many applications in practice (communication, storage) and theory (PCP, crypto,...)
- Typical goals: minimize overhead (i.e. higher rate |x|/|Enc(x)|), decoding from a large fraction of errors (higher δ), efficient decoding

Locally correctable codes

- Locality: super efficient local correction. Is it achievable?
- Assume: Enc is a linear map Enc(x)_i=L_i(x)
- If L_i can be recovered from L_i, L_k then they satisfy the SG property
- High probability decoding \Rightarrow many colinear triplets
- (robust) SG theorem \Rightarrow Dim(span L_i)=small \Rightarrow Rate is zero

Polynomial identity testing (PIT)

Model: algebraic circuits (computations using $+, \times$)

Challenge: Given algebraic circuit C decide C(x)=0?

Efficient Randomized algorithm [Schwartz'80, Zippel'79, DeMillo-Lipton'78]

Goal: A proof. I.e., a deterministic algorithm

Motivation:

- Primality testing [Agrawal-Kayal-Saxena'02]
- Parallel algorithms for finding perfect matching [Karp-Upfal-Wigderson'85, Mulmuley-Vazirani-Vazirani'87]
- Efficient deterministic algorithms implies lower bounds [Kabanets-Impagliazzo'03]

Identity testing of depth-3 algebraic circuits

Example: Let $\omega^d = 1$ is the following true:

$$\begin{split} &\prod_{i=1...d} (3\omega^5 X + (2\omega^5 - 5\omega^i) Y - 6\omega^i Z) + \\ &\prod_{i=1...d} (-2\omega^i X + (3\omega^i + 5) Y + (6 - 5\omega^i) Z) + \\ &\prod_{i=1...d} ((2\omega^{2-3}\omega^i) X - (3\omega^i + 2\omega^i) Y + 5\omega^2 Z) = ? 0 \end{split}$$

Solution: Let

U = 3X + 2Y

V=5X+6Z

W = 2X - 3Y + 5Z

After simple manipulation:

 $\prod(U-\omega^i V) + \prod(V-\omega^i W) + \prod(W-\omega^i U) = (U^d-V^d) + (V^d-W^d) + (W^d-U^d) = 0$

Identity testing of $\Sigma \prod \Sigma$ circuits

- Let $A=\prod a_i$, $B=\prod b_i$, $C=\prod c_i$, a_i , b_i , $c_i \in \mathbb{R}[x_1,...,x_n]$ linear forms Decide whether A+B+C=0
- First nontrivial case (A+B=0 verified by unique factorization)
- [Dvir-S'05]: If we set $a_i = b_j = 0$ then $\exists k$ such that $c_k = 0$, can use colorful SG
- [Kayal-Saraf'09]: If A+B+...+M=0 then (morally) dim($\{a_i\}, \{b_i\}, ..., \{m_i\}$)=m^{O(m)}
- PIT algorithm: Find basis, expand and verify identity in O(1) variables
- [Saxena-Seshadhri'11]: BB-PIT for m summands in n^{O(m)} time (any field)
- [Gupta-Kamath-Kayal-Saptharishi'13]: PIT for $\sum \prod \sum$ (unbounded degree) \Rightarrow PIT for general circuits

Identity testing of $\Sigma^{[3]} \prod \Sigma \prod$ circuits

Let $A=\prod a_i$, $B=\prod b_i$, $C=\prod c_i$, a_i , b_i , $c_i \in \mathbb{R}[x_1,...,x_n]$ degree d polynomials Decide whether A+B+C=0

Theorem[Agrawal-Vinay'08] : PIT for homogeneous depth-4 \implies PIT for general circuits

Conjecture [Beecken-Mittmann-Saxena'13, Gupta'14]: If A+B+C=0 disjoint then algebraic-rank({a_i},{b_i},{c_i})=O(1)

Intuition: If we set $a_i=b_j=0$ then there is some k such that $c_k=0$. Need degree d Edelstein-Kelly theorem (colorful degree d SG)

Example: a=xy+zw, b=xy-zw, $c_1 \cdot c_2 \cdot c_3 \cdot c_4 = (x+z)(x+w)(y+z)(y+w)$

Problem: Product vanishes when a=b=0 but not always the same c_k

Our results

Higher degree SG type theorems

A={a_i} quadratic polynomials

- For every a_i, a_j there is a_k that vanishes whenever a_i and a_j do [S'19] \Rightarrow dim({ a_i })=O(1) if A=RUGUB ... \Rightarrow dim({ a_i })=O(1)
- For every a_i, a_j whenever a_i and a_j vanish then so does $\prod_{k \neq i,j} a_k$ [Peleg-S'20] \Rightarrow dim({ a_i })=O(1)
- $A=\prod a_i$, $B=\prod b_i$, $C=\prod c_i$, quadratic polynomials

[Peleg-S'21] If A+B+C=0 disjoint (wlog) then dim($\{a_i\}, \{b_i\}, \{c_i\}$)=O(1) (via colorful version of [Peleg-S'20])

Answers [Beecken-Mittmann-Saxena'13, Gupta'14] for degree d=2

Proof ingredients

Main tool I: Algebraic Structure Theorem

Theorem[S'19,Peleg-S'20]: $Q_1, Q_2, \{P_i\}$ quadratics s.t. $Q_1(v)=Q_2(v)=0 \implies \prod P_i(v)=0$ Then one of the following cases must hold:

- 1. Some P_i is in the linear span of Q_1 , Q_2
- 2. \exists linear functions ℓ_1, ℓ_2 s.t. $\ell_1 \ell_2 \in \text{span}\{Q_1, Q_2\}$
- 3. \exists linear functions ℓ_1, ℓ_2 s.t. $Q_1 = Q_2 = 0$ modulo ℓ_1, ℓ_2

Examples:

- 2. $Q_2 = Q_1 + \ell \ell', P_1 = (Q_1 + \ell \ell_1) P_2 = (Q_1 + \ell' \ell_2)$
- 3. $Q_1 = xa+yb$, $Q_2 = xc+yd$, $P_1 = (ad-bc)$, $P_2 = x$, $P_3 = y$

Proof idea: Analyzing how the resultant of Q₁,Q₂ factorizes Different cases roughly correspond to different degrees of factors

Main tool II: Robust version of E-K theorem

Recall [Edelstein-Kelly'66]: Colorful version: $P=R \sqcup G \sqcup B$ Every non-monochromatic line contains all 3 colors \Rightarrow dim(affine-span P) ≤ 3

Robust-EK-Thm [S'19]: $P = R \sqcup G \sqcup B$ s.t. every point in one set spans with a δ -fraction of points in the other two sets a point in the third set

 \Rightarrow dim(affine-span P) = O(1/ δ^3)

Remark: probably not tight

(rough) Proof outline of [S'19, Peleg-S'20, Peleg-S'21]

Use the algebraic structure theorem to argue that either

- Coefficient vectors of quadratic polynomials satisfy the robust-SG/EK theorem (and we are done), or
- Each quadratic is a function of a few linear functions
- Then show that these linear functions satisfy the conditions of the robust-SG/EK theorem themselves

Intuition: If (vector of coefficients of) a polynomial Q is on many special lines, then Q has a very restricted structure

Actual proofs: A lot of case analysis

Follow up and related work

SG:

- [de Oliveira-Sengupta'22]: SG for cubic polynomials (for every two cubics there exists a third...) by extension of structure theorem to cubics
- [Peleg-S'22,Garg-de Oliveira-Sengupta'22]: Robust Quadratic-SG theorem (for every Q_i, for δ-fraction of Q_j, there exists a Q_k...)

PIT:

- [Limaye-Srinivasan-Tavenas'21]: n^{nε} PIT for bounded depth circuits
- [Dutta-Dwivedi-Saxena'21]: Quasi-polynomial time BB PIT for $\Sigma^{[O(1)]} \prod \Sigma \prod^{[\log(n)O(1)]}$ using a different techniques

Conclusion

Saw applications of problems in discrete geometry in

- Locally correctable codes
- Verifying algebraic identities

Saw generalization to algebra-geometric questions that are also relevant for identity testing

Many open questions – higher degrees, more sets,...

Thank You!