Factoring, Root Finding, AND sEvERAL OTHER THINGS

Amit Sinhababu

Chennai Mathematical Institute
WACT 2023, Warwick

OUtline of the Talk

- Multivariate Polynomial Factoring
- Background and Motivation.
- Factoring Algebraic Branching Programs.
- Multivariate Factoring and PIT

OUtline of the Talk

- Multivariate Polynomial Factoring
- Background and Motivation.
- Factoring Algebraic Branching Programs.
- Multivariate Factoring and PIT.

Multivariate Polynomial Factoring: Background

FACTORING UNIVARIATES

- We encounter integer and polynomial factoring in school.
- Polynomials can be factored in polynomial time.
- Factor $f(x) \in \mathbb{Q}[x]$ using LLL algorithm in deterministic polynomial time.
- Factor $f(x) \in \mathbb{F}_{q}[x]$ using Berlekamp's algorithm.
- We encounter integer and polynomial factoring in school.
- Polynomials can be factored in polynomial time.
- Factor $f(x) \in \mathbb{Q}[x]$ using LLL algorithm in deterministic polynomial time.
- Factor $f(x) \in \mathbb{F}_{q}[x]$ using Berlekamp's algorithm.
- Polynomials are often easier cases than integers.
- Squarefree: Test if a given integer or polynomial has a factor that repeats.
- For integers, no polynomial time algorithm for this is known.
- Derivatives rescue us in case of polynomials. Test if $f(x)$ and its derivative are relatively prime.
- Polynomials are often easier cases than integers.
- Squarefree: Test if a given integer or polynomial has a factor that repeats.
- For integers, no polynomial time algorithm for this is known.
- Derivatives rescue us in case of polynomials. Test if $f(x)$ and its derivative are relatively prime.
- Polynomials are often easier cases than integers.
- Squarefree: Test if a given integer or polynomial has a factor that repeats.
- For integers, no polynomial time algorithm for this is known.
- Derivatives rescue us in case of polynomials. Test if $f(x)$ and its derivative are relatively prime.
- Polynomials are often easier cases than integers.
- Squarefree: Test if a given integer or polynomial has a factor that repeats.
- For integers, no polynomial time algorithm for this is known.
- Derivatives rescue us in case of polynomials. Test if $f(x)$ and its derivative are relatively prime.
- The focus of today's talk is multivariate polynomial factorization.
- Multivariate factoring can be reduced to univariate factoring.
- The focus of today's talk is multivariate polynomial factorization.
- Multivariate factoring can be reduced to univariate factoring.
- Suppose $f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, x_{n}\right) h\left(x_{1}, \ldots, x_{n}\right)$.
- Degree of each variable in $f\left(x_{1}, \ldots, x_{n}\right)$ is $\leq d$.
- Apply Kronecker substitution $\phi: x_{i} \mapsto z^{D^{i-1}}$ where $D=d+1$.
- Each monomial in f uniquely maps to a monomial in $\phi(f)$. Thus, we can invert the map ϕ.
- Suppose $f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, x_{n}\right) h\left(x_{1}, \ldots, x_{n}\right)$.
- Degree of each variable in $f\left(x_{1}, \ldots, x_{n}\right)$ is $\leq d$.
- Apply Kronecker substitution $\phi: x_{i} \mapsto z^{D^{i-1}}$ where $D=d+1$.
- Each monomial in f uniquely maps to a monomial in $\phi(f)$. Thus, we can invert the map ϕ.
- Suppose $f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, x_{n}\right) h\left(x_{1}, \ldots, x_{n}\right)$.
- Degree of each variable in $f\left(x_{1}, \ldots, x_{n}\right)$ is $\leq d$.
- Apply Kronecker substitution $\phi: x_{i} \mapsto z^{D^{i-1}}$ where $D=d+1$.
- Each monomial in f uniquely maps to a monomial in $\phi(f)$. Thus, we can invert the map ϕ.
- Suppose $f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, x_{n}\right) h\left(x_{1}, \ldots, x_{n}\right)$.
- Degree of each variable in $f\left(x_{1}, \ldots, x_{n}\right)$ is $\leq d$.
- Apply Kronecker substitution $\phi: x_{i} \mapsto z^{D^{i-1}}$ where $D=d+1$.
- Each monomial in f uniquely maps to a monomial in $\phi(f)$. Thus, we can invert the map ϕ.
- If $f=g h$, then $\phi(f)=\phi(g) \phi(h)$.
- Factorize $\phi(f)$ into univariate irreducible factors.
- Though g is irreducible, $\phi(g)$ may not be irreducible.
- Product of a subset of the factors of $\phi(f)$ would correspond to $\phi(g)$.
- Try all subsets. Apply inverse Kronecker and test divisibility.
- Time complexity: Exponential in degree in worst-case (even for bivariates).
- If $f=g h$, then $\phi(f)=\phi(g) \phi(h)$.
- Factorize $\phi(f)$ into univariate irreducible factors.
- Though g is irreducible, $\phi(g)$ may not be irreducible.
- Product of a subset of the factors of $\phi(f)$ would correspond to $\phi(g)$.
- Try all subsets. Apply inverse Kronecker and test divisibility.
- Time complexity: Exponential in degree in worst-case (even for bivariates).
- If $f=g h$, then $\phi(f)=\phi(g) \phi(h)$.
- Factorize $\phi(f)$ into univariate irreducible factors.
- Though g is irreducible, $\phi(g)$ may not be irreducible.
- Product of a subset of the factors of $\phi(f)$ would correspond
- Try all subsets. Apply inverse Kronecker and test divisibility.
- Time complexity: Exponential in degree in worst-case (even for bivariates)
- If $f=g h$, then $\phi(f)=\phi(g) \phi(h)$.
- Factorize $\phi(f)$ into univariate irreducible factors.
- Though g is irreducible, $\phi(g)$ may not be irreducible.
- Product of a subset of the factors of $\phi(f)$ would correspond to $\phi(g)$.
- Try all subsets. Apply inverse Kronecker and test divisibility.
- Time complexity: Exponential in degree in worst-case (even for bivariates)
- If $f=g h$, then $\phi(f)=\phi(g) \phi(h)$.
- Factorize $\phi(f)$ into univariate irreducible factors.
- Though g is irreducible, $\phi(g)$ may not be irreducible.
- Product of a subset of the factors of $\phi(f)$ would correspond to $\phi(g)$.
- Try all subsets. Apply inverse Kronecker and test divisibility.
- Time complexity: Exponential in degree in worst-case (even for bivariates).
- Kaltofen (1982): Efficient reduction of bivariate to univariate factoring.
- Tools: Newton iteration/ Hensel lifting, Linear System Solving.
- We have to define the size of input and output polynomials in the multivariate setting to talk about time complexity.
- Dense: List all the coefficients of $\binom{n+d}{d}$ many monomials up to degree d.
- Sparse: List only the monomials with nonzero coefficients. Eg. $x_{1}^{2}+x_{2} x_{3}+5 x^{4}$.
- Formula: $\left(1+x_{1}\right)\left(1+x_{2}\right) x_{3}-\left(1+x_{1}\right)^{2}$. Reuse of computation not allowed. Structurally, looks like a tree.
- Straight-Line Programs or Arithmetic Circuits.

Arithmetic circuits

Two circuits for computing $x^{2}+2 x y+y^{2}$

Arithmetic circuits

Two circuits for computing $x^{2}+2 x y+y^{2}$

Size: Total number of nodes or edges.

Complexity of Factors

FACTORIZATION OF A POLYNOMIAL
Let f be a polynomial of degree d that has size s in some model.

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{m} f_{i}^{e_{i}}
$$

Let f_{i} 's be its irreducible factors over \mathbb{F}.
FActor size bound question: Do all its factors have
$\operatorname{POLY}(s, d)$ size in the same model?

COMPLEXITY OF FACTORS

FACTORIZATION OF A POLYNOMIAL
Let f be a polynomial of degree d that has size s in some model.

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{m} f_{i}^{e_{i}}
$$

Let f_{i} 's be its irreducible factors over \mathbb{F}.

Factor size bound question: Do all its factors have $\operatorname{POLY}(s, d)$ size in the same model?

CLOSURE UNDER FACTORING

- Let \mathcal{C} be a class of polynomials.
- Closure under multiplication: $f, g \in \mathcal{C} \Longrightarrow f \times g \in \mathcal{C}$.
- Closure under factoring: If $f \times g$ is in \mathcal{C}, are f, g also in \mathcal{C} ?
- Apriori, it is not obvious. The smallest representation of $f g$ may not be via computing f and g.

CLOSURE UNDER FACTORING

- Let \mathcal{C} be a class of polynomials.
- Closure under multiplication: $f, g \in \mathcal{C} \Longrightarrow f \times g \in \mathcal{C}$.
- Closure under factoring: If $f \times g$ is in \mathcal{C}, are f, g also in \mathcal{C} ?
- Apriori, it is not obvious. The smallest representation of $f g$ may not be via computing f and g.
- Factors can be larger in size. For example, $x^{d}-1=(x-1)\left(1+x+\cdots+x^{d-1}\right)$.
- Sparsity of factors can be superpolynomial wrt input polynomial's sparsity.
- Kaltofen 1986: If size denotes arithmetic circuit size, $g \mid f$ $\Longrightarrow \operatorname{size}(g) \leq \operatorname{POLY}(\operatorname{size}(f), \operatorname{deg}(f))$.
- Goal: Extend Kaltofen's result for factors of formulas, constant depth circuits, algebraic branching programs (ABPs), etc.
- Factors can be larger in size. For example, $x^{d}-1=(x-1)\left(1+x+\cdots+x^{d-1}\right)$.
- Sparsity of factors can be superpolynomial wrt input polynomial's sparsity.
- Kaltofen 1986: If size denotes arithmetic circuit size, $g \mid f$ $\Longrightarrow \operatorname{size}(g) \leq \operatorname{POLY}(\operatorname{size}(f), \operatorname{deg}(f))$.
- Goal: Extend Kaltofen's result for factors of formulas, constant depth circuits, algebraic branching programs (ABPs), etc.
- Factors can be larger in size. For example, $x^{d}-1=(x-1)\left(1+x+\cdots+x^{d-1}\right)$.
- Sparsity of factors can be superpolynomial wrt input polynomial's sparsity.
- Kaltofen 1986: If size denotes arithmetic circuit size, $g \mid f$ $\Longrightarrow \operatorname{size}(g) \leq \operatorname{POLY}(\operatorname{size}(f), \operatorname{deg}(f))$.
- Goal: Extend Kaltofen's result for factors of formulas, constant depth circuits, algebraic branching programs (ABPs), etc.
- Multivariate Polynomial Factoring has applications in coding theory and various other problems.
- Helps to bridge two central questions in algebraic complexity: VP vs VNP and polynomial identity testing (PIT)
- Kabanets and Impagliazzo (2003): Exponential lower bound for arithmetic circuits \Longrightarrow Quasi-poly blackbox deterministic PIT for circuits.
- Hardness of multiples: If f is hard for \mathcal{C}, all its nonzero multiples are hard for \mathcal{C}.
- Multivariate Polynomial Factoring has applications in coding theory and various other problems.
- Helps to bridge two central questions in algebraic complexity: VP vs VNP and polynomial identity testing (PIT).
- Kabanets and Impagliazzo (2003): Exponential lower bound for arithmetic circuits \Longrightarrow Quasi-poly blackbox deterministic PIT for circuits.
- Hardness of multiples: If f is hard for \mathcal{C}, all its nonzero multiples are hard for \mathcal{C}.
- Multivariate Polynomial Factoring has applications in coding theory and various other problems.
- Helps to bridge two central questions in algebraic complexity: VP vs VNP and polynomial identity testing (PIT).
- Kabanets and Impagliazzo (2003): Exponential lower bound for arithmetic circuits \Longrightarrow Quasi-poly blackbox deterministic PIT for circuits.
- Hardness of multiples: If f is hard for \mathcal{C}, all its nonzero multiples are hard for \mathcal{C}.
- Multivariate Polynomial Factoring has applications in coding theory and various other problems.
- Helps to bridge two central questions in algebraic complexity: VP vs VNP and polynomial identity testing (PIT).
- Kabanets and Impagliazzo (2003): Exponential lower bound for arithmetic circuits \Longrightarrow Quasi-poly blackbox deterministic PIT for circuits.
- Hardness of multiples: If f is hard for \mathcal{C}, all its nonzero multiples are hard for \mathcal{C}.

Factor Closure Results

- Oliveira (2015) proved poly (s) factor size bounds for constant depth circuits assuming the individual degree is constant.
- Dutta, Saxena, S (2018): If we take formula/ABP, $g \mid f \Longrightarrow$ $\left.\operatorname{size}(g) \leq \operatorname{poly}\left(\operatorname{size}(f), d^{O(\log d)}\right)\right)$.
- Chou, Kumar, Solomon (2018) showed that VNP is closed under factors.
- Oliveira (2015) proved poly (s) factor size bounds for constant depth circuits assuming the individual degree is constant.
- Dutta, Saxena, S (2018): If we take formula/ABP, $g \mid f \Longrightarrow$ $\left.\operatorname{size}(g) \leq \operatorname{poly}\left(\operatorname{size}(f), d^{O(\log d)}\right)\right)$.
- Chou, Kumar, Solomon (2018) showed that VNP is closed under factors.

Factorization of Arithmetic Branching Programs

Theorem (S, Thierauf, 2020)

Let polynomial $p(\bar{x})$ over \mathbb{F} have ABP-size s.
All factors of p have $A B P$-size $\operatorname{POLY}(s)$

Algorithm: Factors can be efficiently constructed in randomized polynomial time.

Theorem (S, Thierauf, 2020)

Let polynomial $p(\bar{x})$ over \mathbb{F} have ABP-size s.
All factors of p have ABP -size $\operatorname{POLY}(s)$

Algorithm: Factors can be efficiently constructed in randomized polynomial time.

ABP via Picture

Example:

The polynomial computed by the above ABP is

ABP via Picture

Example:

The polynomial computed by the above ABP is

$$
x_{1} x_{2} x_{3}+x_{1} x_{2}\left(1+x_{3}\right)+\left(1+x_{1}\right) x_{2}\left(1+x_{3}\right) .
$$

Computational power of ABPs

Arithmetic Formula $\leq \mathrm{ABP} \leq$ Arithmetic Circuit

DET: compute determinant of $n \times n$ matrices

[Csanky-Faddeev-LeVerrier 1976] [Berkowitz-Samuelson 1985, Chistov 1985]

- DET by poly (n)-size ABPs
[Mahajan-Vinay 1997]

Consequence

Poly-size ARPs can compute solutions of linear systems over
$\mathbb{F}\left(x_{1}, \ldots, x_{n}\right)$

- Not known for formulas

Computational power of ABPs

Arithmetic Formula $\leq \mathrm{ABP} \leq$ Arithmetic Circuit

DET: compute determinant of $n \times n$ matrices

Consequence
Poly-size ABPs can compute solutions of linear systems over
$\mathbb{F}\left(x_{1}, \ldots, x_{n}\right)$

- Not known for formulas

Computational power of ABPs

Arithmetic Formula $\leq \mathrm{ABP} \leq$ Arithmetic Circuit

DET: compute determinant of $n \times n$ matrices

- $\operatorname{DET} \in \mathrm{NC}^{2}$
[Csanky-Faddeev-LeVerrier 1976]
[Berkowitz-Samuelson 1985, Chistov 1985]
- DET by poly (n)-size ABPs
[Mahajan-Vinay 1997]

Consequence
Poly-size ABPs can compute solutions of linear systems over

- Not known for formulas

Computational power of ABPs

Arithmetic Formula $\leq \mathrm{ABP} \leq$ Arithmetic Circuit

DET: compute determinant of $n \times n$ matrices

- $\operatorname{DET} \in \mathrm{NC}^{2}$
[Csanky-Faddeev-LeVerrier 1976]
[Berkowitz-Samuelson 1985, Chistov 1985]
- DET by poly (n)-size ABPs
[Mahajan-Vinay 1997]

Consequence
Poly-size ABPs can compute solutions of linear systems over

- Not known for formulas

Computational power of ABPs

Arithmetic Formula $\leq \mathrm{ABP} \leq$ Arithmetic Circuit

DET: compute determinant of $n \times n$ matrices

- $\operatorname{DET} \in \mathrm{NC}^{2}$
[Csanky-Faddeev-LeVerrier 1976]
[Berkowitz-Samuelson 1985, Chistov 1985]
- DET by poly (n)-size ABPs
[Mahajan-Vinay 1997]

Consequence

Poly-size ABPs can compute solutions of linear systems over $\mathbb{F}\left(x_{1}, \ldots, x_{n}\right)$.

- Not known for formulas

Computational power of ABPs

Arithmetic Formula $\leq \mathrm{ABP} \leq$ Arithmetic Circuit

DET: compute determinant of $n \times n$ matrices

- $\operatorname{DET} \in \mathrm{NC}^{2}$
[Csanky-Faddeev-LeVerrier 1976]
[Berkowitz-Samuelson 1985, Chistov 1985]
- DET by poly (n)-size ABPs
[Mahajan-Vinay 1997]

Consequence

Poly-size ABPs can compute solutions of linear systems over $\mathbb{F}\left(x_{1}, \ldots, x_{n}\right)$.

- Not known for formulas
[Oliveira 2016, Dutta, Saxena, S 2018]

Factoring \leq root approximation in power series

$p(\boldsymbol{x}, y)$ has factor $y-q(\boldsymbol{x}) \Longleftrightarrow p(\boldsymbol{x}, q(\boldsymbol{x}))=0$

- $\log d$ iterations leads to $d^{\log d}$-size ABPs

Factoring \leq root approximation in power series

$p(\boldsymbol{x}, y)$ has factor $y-q(\boldsymbol{x}) \Longleftrightarrow p(\boldsymbol{x}, q(\boldsymbol{x}))=0$

- $\log d$ iterations leads to $d^{\log d}$-size ABPs

Techniques for factorization

Newton Iteration
[Oliveira 2016, Dutta, Saxena, S 2018]
Factoring \leq root approximation in power series
$p(\boldsymbol{x}, y)$ has factor $y-q(\boldsymbol{x}) \Longleftrightarrow p(\boldsymbol{x}, q(\boldsymbol{x}))=0$

- approximate root via Newton iteration

$$
y_{t+1}=y_{t}-\frac{p\left(\boldsymbol{x}, y_{t}\right)}{p^{\prime}\left(\boldsymbol{x}, y_{t}\right)}
$$

- $\log d$ iterations leads to $d^{\log d}$-size ABPs

Techniques for factorization

Newton Iteration
[Oliveira 2016, Dutta, Saxena, S 2018]
Factoring \leq root approximation in power series
$p(\boldsymbol{x}, y)$ has factor $y-q(\boldsymbol{x}) \Longleftrightarrow p(\boldsymbol{x}, q(\boldsymbol{x}))=0$

- approximate root via Newton iteration

$$
y_{t+1}=y_{t}-\frac{p\left(\boldsymbol{x}, y_{t}\right)}{p^{\prime}\left(\boldsymbol{x}, y_{t}\right)}
$$

- $\log d$ iterations leads to $d^{\log d}$-size ABPs

Techniques for factorization

Newton Iteration
[Oliveira 2016, Dutta, Saxena, S 2018]
Factoring \leq root approximation in power series
$p(\boldsymbol{x}, y)$ has factor $y-q(\boldsymbol{x}) \Longleftrightarrow p(\boldsymbol{x}, q(\boldsymbol{x}))=0$

- approximate root via Newton iteration

$$
y_{t+1}=y_{t}-\frac{p\left(\boldsymbol{x}, y_{t}\right)}{p^{\prime}\left(\boldsymbol{x}, y_{t}\right)}
$$

- $\log d$ iterations leads to $d^{\log d}$-size ABPs

After preprocessing: $f(x, y), 2$-variate, degree d, monic in x (i.e. highest x-power has constant coefficient)

Goal: Compute g s.t. $f=g h$
 (1) Initial step: Factorize univariate polynomial $f(x, 0)$ - $f(x, 0)=g_{0}(x) h_{0}(x)$ - Equivalently: $\quad f(x, y) \equiv g_{0}(x) h_{0}(x)(\bmod y)$

(2) Lifting: compute $g_{1}(x, y), h_{1}(x, y)$ - $f \equiv g_{1} h_{1}\left(\bmod u^{2}\right)$

Iterate lifting $t=O(\log d)$ times: $\quad f \equiv g_{t} h_{t}\left(\bmod y^{2^{t}}\right)$

After preprocessing: $f(x, y), 2$-variate, degree d, monic in x (i.e. highest x-power has constant coefficient)

Goal: Compute g s.t. $f=g h$
(1) Initial step: Factorize univariate polynomial $f(x, 0)$

- Equivalently: $\quad f(x, y) \equiv g_{0}(x) h_{0}(x)(\bmod y)$
(2) Lifting: compute $g_{1}(x, y), h_{1}(x, y)$

Iterate lifting $t=O(\log d)$ times: $\quad f \equiv g_{t} h_{t}\left(\bmod y^{2^{t}}\right)$

After preprocessing: $f(x, y), 2$-variate, degree d, monic in x (i.e. highest x-power has constant coefficient)

Goal: Compute g s.t. $f=g h$
(1) Initial step: Factorize univariate polynomial $f(x, 0)$

- $f(x, 0)=g_{0}(x) h_{0}(x)$
- Equivalently:
$f(x, y) \equiv g_{0}(x) h_{0}(x)(\bmod y)$
(2) Lifting: compute $g_{1}(x, y), h_{1}(x, y)$

Iterate lifting $t=O(\log d)$ times: $\quad f \equiv g_{t} h_{t}\left(\bmod y^{2^{t}}\right)$

After preprocessing: $f(x, y), 2$-variate, degree d, monic in x (i.e. highest x-power has constant coefficient)

Goal: Compute g s.t. $f=g h$
(1) Initial step: Factorize univariate polynomial $f(x, 0)$

- $f(x, 0)=g_{0}(x) h_{0}(x)$
- Equivalently: $\quad f(x, y) \equiv g_{0}(x) h_{0}(x)(\bmod y)$
(2) Lifting: compute $g_{1}(x, y), h_{1}(x, y)$

Iterate lifting $t=O(\log d)$ times: $\quad f \equiv g_{t} h_{t}\left(\bmod y^{2^{t}}\right)$

After preprocessing: $f(x, y), 2$-variate, degree d, monic in x (i.e. highest x-power has constant coefficient)

Goal: Compute g s.t. $f=g h$
(1) Initial step: Factorize univariate polynomial $f(x, 0)$

- $f(x, 0)=g_{0}(x) h_{0}(x)$
- Equivalently: $\quad f(x, y) \equiv g_{0}(x) h_{0}(x)(\bmod y)$
(2) Lifting: compute $g_{1}(x, y), h_{1}(x, y)$
- $f \equiv g_{1} h_{1}\left(\bmod y^{2}\right)$

Iterate lifting $t=O(\log d)$ times: $\quad f \equiv g_{t} h_{t}\left(\bmod y^{2^{t}}\right)$

After preprocessing: $f(x, y), 2$-variate, degree d, monic in x (i.e. highest x-power has constant coefficient)

Goal: Compute g s.t. $f=g h$
(1) Initial step: Factorize univariate polynomial $f(x, 0)$

- $f(x, 0)=g_{0}(x) h_{0}(x)$
- Equivalently: $\quad f(x, y) \equiv g_{0}(x) h_{0}(x)(\bmod y)$
(2) Lifting: compute $g_{1}(x, y), h_{1}(x, y)$
- $f \equiv g_{1} h_{1}\left(\bmod y^{2}\right)$

Iterate lifting $t=O(\log d)$ times: $\quad f \equiv g_{t} h_{t}\left(\bmod y^{2^{t}}\right)$

$$
\begin{aligned}
f & =g h \\
f & \equiv g_{t} h_{t}\left(\bmod y^{2^{t}}\right)
\end{aligned}
$$

One can show: for some polynomial h_{t}^{\prime}

$$
g \equiv g_{t} h_{t}^{\prime}\left(\bmod y^{2}\right)
$$

- g_{t} known, but g and h_{t}^{\prime} unknown
- Set up linear system in unknown coefficients of g and h^{\prime}
- Jump Step: Right choice of $t \Longrightarrow$ we get g, without any mod! Can be proved using resultants.

Hensel Lifting

$$
\begin{aligned}
f & =g h \\
f & \equiv g_{t} h_{t}\left(\bmod y^{2^{t}}\right)
\end{aligned}
$$

One can show: for some polynomial h_{t}^{\prime}

$$
g \equiv g_{t} h_{t}^{\prime}\left(\bmod {y^{2}}^{2^{t}}\right)
$$

- g_{t} known, but g and h_{t}^{\prime} unknown
- Set up linear system in unknown coefficients of g and h^{\prime}
- Jump Step: Right choice of $t \Longrightarrow$ we get g, without any mod! Can be proved using resultants.

$$
\begin{aligned}
f & =g h \\
f & \equiv g_{t} h_{t}\left(\bmod y^{2^{t}}\right)
\end{aligned}
$$

One can show: for some polynomial h_{t}^{\prime}

$$
g \equiv g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)
$$

- g_{t} known, but g and h_{t}^{\prime} unknown
- Set up linear system in unknown coefficients of g and h^{\prime}
- Jump Step: Right choice of $t \Longrightarrow$ we get g, without any mod! Can be proved using resultants.

Hensel Lifting

$$
\begin{aligned}
f & =g h \\
f & \equiv g_{t} h_{t}\left(\bmod y^{2^{t}}\right)
\end{aligned}
$$

One can show: for some polynomial h_{t}^{\prime}

$$
g \equiv g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)
$$

- g_{t} known, but g and h_{t}^{\prime} unknown
- Set up linear system in unknown coefficients of g and h^{\prime}
- Jump Step: Right choice of $t \Longrightarrow$ we get g, without any mod! Can be proved using resultants.

$$
\begin{aligned}
f & =g h \\
f & \equiv g_{t} h_{t}\left(\bmod y^{2^{t}}\right)
\end{aligned}
$$

One can show: for some polynomial h_{t}^{\prime}

$$
g \equiv g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)
$$

- g_{t} known, but g and h_{t}^{\prime} unknown
- Set up linear system in unknown coefficients of g and h^{\prime}
- Jump Step: Right choice of $t \Longrightarrow$ we get g, without any mod! Can be proved using resultants.

Main difference to earlier liftings

Start with g_{0}, h_{0} monic

- standard Hensel Lifting maintains g_{k}, h_{k} monic, for all k
- simplified version gives up monicness: saves a division
- ABP-size grows by a constant factor in each iteration \Longrightarrow overall size $\operatorname{poly}\left(c^{\log d}, s\right)=\operatorname{polv}(s)$
- Crucial technical part: Jump Step still works!

Main difference to earlier liftings

Start with g_{0}, h_{0} monic

- standard Hensel Lifting maintains g_{k}, h_{k} monic, for all k
- simplified version gives up monicness: saves a division
- ABP-size grows by a constant factor in each iteration \Longrightarrow overall size poly $\left(c^{\log d} s\right)=$ poly (s)
- Crucial technical part: Jump Step still works!

Main difference to earlier liftings

Start with g_{0}, h_{0} monic

- standard Hensel Lifting maintains g_{k}, h_{k} monic, for all k
- simplified version gives up monicness: saves a division
- ABP-size grows by a constant factor in each iteration \Longrightarrow overall size noly $\left(c^{\log d} s\right)=\operatorname{noly}(s)$
- Crucial technical part: Jump Step still works!

Main difference to earlier liftings

Start with g_{0}, h_{0} monic

- standard Hensel Lifting maintains g_{k}, h_{k} monic, for all k
- simplified version gives up monicness: saves a division
- ABP-size grows by a constant factor in each iteration \Longrightarrow overall size poly $\left(c^{\log d}, s\right)=\operatorname{poly}(s)$
- Crucial technical part: Jump Step still works!

Main difference to earlier liftings

Start with g_{0}, h_{0} monic

- standard Hensel Lifting maintains g_{k}, h_{k} monic, for all k
- simplified version gives up monicness: saves a division
- ABP-size grows by a constant factor in each iteration
\Longrightarrow overall size poly $\left(c^{\log d}, s\right)=\operatorname{poly}(s)$
- Crucial technical part: Jump Step still works!

Main difference to earlier liftings

Start with g_{0}, h_{0} monic

- standard Hensel Lifting maintains g_{k}, h_{k} monic, for all k
- simplified version gives up monicness: saves a division
- ABP-size grows by a constant factor in each iteration
\Longrightarrow overall size $\operatorname{poly}\left(c^{\log d}, s\right)=\operatorname{poly}(s)$
- Crucial technical part: Jump Step still works!

Hensel Lifting: Definition of Lift

- Let \mathcal{R} be a commutative ring with 1 and $\mathcal{I} \subseteq \mathcal{R}$ be an ideal.
- Condition for lift: Let $f, g, h, a, b \in \mathcal{R}$ such that
- (factorization) $f \equiv g h(\bmod \mathcal{I})$
- (pseudo-coprimality) $a g+b h \equiv 1(\bmod \mathcal{I})$.
- Then g^{\prime}, h^{\prime} is lift of g, h w.r.t. f if it satisfy the following.
- (Better factorization) $f \equiv g^{\prime} h^{\prime}\left(\bmod \mathcal{I}^{2}\right)$,
- (Lifts) $g^{\prime} \equiv g(\bmod \mathcal{I})$ and $h^{\prime} \equiv h(\bmod \mathcal{I})$, and
- (pseudo-coprimality) $\exists a^{\prime}, b^{\prime} \in \mathcal{R} \quad a^{\prime} g^{\prime}+b^{\prime} h^{\prime} \equiv 1\left(\bmod \mathcal{I}^{2}\right)$.

Hensel Lifting: Definition of Lift

- Let \mathcal{R} be a commutative ring with 1 and $\mathcal{I} \subseteq \mathcal{R}$ be an ideal.
- Condition for lift: Let $f, g, h, a, b \in \mathcal{R}$ such that
- (factorization) $f \equiv g h(\bmod \mathcal{I})$
- (pseudo-coprimality) $a g+b h \equiv 1(\bmod \mathcal{I})$.
- Then g^{\prime}, h^{\prime} is lift of g, h w.r.t. f if it satisfy the following.
- (Better factorization) $f \equiv g^{\prime} h^{\prime}\left(\bmod \mathcal{I}^{2}\right)$,
- (Lifts) $g^{\prime} \equiv g(\bmod \mathcal{I})$ and $h^{\prime} \equiv h(\bmod \mathcal{I})$, and
- (pseudo-coprimality) $\exists a^{\prime}, b^{\prime} \in \mathcal{R} \quad a^{\prime} g^{\prime}+b^{\prime} h^{\prime} \equiv 1\left(\bmod \mathcal{I}^{2}\right)$.
- Let \mathcal{R} be a commutative ring with 1 and $\mathcal{I} \subseteq \mathcal{R}$ be an ideal.
- Condition for lift: Let $f, g, h, a, b \in \mathcal{R}$ such that
- (factorization) $f \equiv g h(\bmod \mathcal{I})$
- (pseudo-coprimality) $a g+b h \equiv 1(\bmod \mathcal{I})$.
- Then g^{\prime}, h^{\prime} is lift of g, h w.r.t. f if it satisfy the following.
- (Better factorization) $f \equiv g^{\prime} h^{\prime}\left(\bmod \mathcal{I}^{2}\right)$,
- (Lifts) $g^{\prime} \equiv g(\bmod \mathcal{I})$ and $h^{\prime} \equiv h(\bmod \mathcal{I})$, and
- (pseudo-coprimality) $\exists a^{\prime}, b^{\prime} \in \mathcal{R} \quad a^{\prime} g^{\prime}+b^{\prime} h^{\prime} \equiv 1\left(\bmod \mathcal{I}^{2}\right)$.
- Let \mathcal{R} be a commutative ring with 1 and $\mathcal{I} \subseteq \mathcal{R}$ be an ideal.
- Condition for lift: Let $f, g, h, a, b \in \mathcal{R}$ such that
- (factorization) $f \equiv g h(\bmod \mathcal{I})$
- (pseudo-coprimality) $a g+b h \equiv 1(\bmod \mathcal{I})$.
- Then g^{\prime}, h^{\prime} is lift of g, h w.r.t. f if it satisfy the following.
- (Better factorization)
- (Lifts) $g^{\prime} \equiv g(\bmod \mathcal{I})$ and $h^{\prime} \equiv h(\bmod \mathcal{I})$, and
- (pseudo-coprimality) $\exists a^{\prime}, b^{\prime} \in \mathcal{R} \quad a^{\prime} g^{\prime}+b^{\prime} h^{\prime} \equiv 1\left(\bmod \mathcal{I}^{2}\right)$
- Let \mathcal{R} be a commutative ring with 1 and $\mathcal{I} \subseteq \mathcal{R}$ be an ideal.
- Condition for lift: Let $f, g, h, a, b \in \mathcal{R}$ such that
- (factorization) $f \equiv g h(\bmod \mathcal{I})$
- (pseudo-coprimality) $a g+b h \equiv 1(\bmod \mathcal{I})$.
- Then g^{\prime}, h^{\prime} is lift of g, h w.r.t. f if it satisfy the following.
- (Better factorization) $f \equiv g^{\prime} h^{\prime}\left(\bmod \mathcal{I}^{2}\right)$,
- (Lifts) $g^{\prime} \equiv g(\bmod \mathcal{I})$ and $h^{\prime} \equiv h(\bmod \mathcal{I})$, and
- (pseudo-coprimality) $\exists a^{\prime}, b^{\prime} \in \mathcal{R} \quad a^{\prime} g^{\prime}+b^{\prime} h^{\prime} \equiv 1\left(\bmod \mathcal{I}^{2}\right)$
- Let \mathcal{R} be a commutative ring with 1 and $\mathcal{I} \subseteq \mathcal{R}$ be an ideal.
- Condition for lift: Let $f, g, h, a, b \in \mathcal{R}$ such that
- (factorization) $f \equiv g h(\bmod \mathcal{I})$
- (pseudo-coprimality) $a g+b h \equiv 1(\bmod \mathcal{I})$.
- Then g^{\prime}, h^{\prime} is lift of g, h w.r.t. f if it satisfy the following.
- (Better factorization) $f \equiv g^{\prime} h^{\prime}\left(\bmod \mathcal{I}^{2}\right)$,
- (Lifts) $g^{\prime} \equiv g(\bmod \mathcal{I})$ and $h^{\prime} \equiv h(\bmod \mathcal{I})$, and
- (pseudo-coprimality) $\exists a^{\prime}, b^{\prime} \in \mathcal{R}$
- Let \mathcal{R} be a commutative ring with 1 and $\mathcal{I} \subseteq \mathcal{R}$ be an ideal.
- Condition for lift: Let $f, g, h, a, b \in \mathcal{R}$ such that
- (factorization) $f \equiv g h(\bmod \mathcal{I})$
- (pseudo-coprimality) $a g+b h \equiv 1(\bmod \mathcal{I})$.
- Then g^{\prime}, h^{\prime} is lift of g, h w.r.t. f if it satisfy the following.
- (Better factorization) $f \equiv g^{\prime} h^{\prime}\left(\bmod \mathcal{I}^{2}\right)$,
- (Lifts) $g^{\prime} \equiv g(\bmod \mathcal{I})$ and $h^{\prime} \equiv h(\bmod \mathcal{I})$, and
- (pseudo-coprimality) $\exists a^{\prime}, b^{\prime} \in \mathcal{R} \quad a^{\prime} g^{\prime}+b^{\prime} h^{\prime} \equiv 1\left(\bmod \mathcal{I}^{2}\right)$.
- Compute the following.
- $e=f-g h$
- $g^{\prime}=g+b e$ and $h^{\prime}=h+a e$
- $c=a g^{\prime}+b h^{\prime}-1$
- $a^{\prime}=a(1-c)$ and $b^{\prime}=b(1-c)$.
- If g, \hbar, a, b are small formulas, we have to make 5 copies of them to compute the next round $g^{\prime}, h^{\prime}, a^{\prime}, b^{\prime}$.
- Compute the following.
- $e=f-g h$
- $g^{\prime}=g+b e$ and $h^{\prime}=h+a e$
- $c=a g^{\prime}+b h^{\prime}-1$
- $a^{\prime}=a(1-c)$ and $b^{\prime}=b(1-c)$.
- If g, h, a, b are small formulas, we have to make 5 copies of them to compute the next round $g^{\prime}, h^{\prime}, a^{\prime}, b^{\prime}$.
- Compute the following.
- $e=f-g h$
- $g^{\prime}=g+b e$ and $h^{\prime}=h+a e$
- $c=a g^{\prime}+b h^{\prime}-1$
- $a^{\prime}=a(1-c)$ and $b^{\prime}=b(1-c)$.
- If g, h, a, b are small formulas, we have to make 5 copies of them to compute the next round $g^{\prime}, h^{\prime}, a^{\prime}, b^{\prime}$.
- Compute the following.
- $e=f-g h$
- $g^{\prime}=g+b e$ and $h^{\prime}=h+a e$
- $c=a g^{\prime}+b h^{\prime}-1$
- $a^{\prime}=a(1-c)$ and $b^{\prime}=b(1-c)$.
- If g, h, a, b are small formulas, we have to make 5 copies of them to compute the next round $g^{\prime}, h^{\prime}, a^{\prime}, b^{\prime}$.
- Compute the following.
- $e=f-g h$
- $g^{\prime}=g+b e$ and $h^{\prime}=h+a e$
- $c=a g^{\prime}+b h^{\prime}-1$
- $a^{\prime}=a(1-c)$ and $b^{\prime}=b(1-c)$.
- If g, h, a, b are small formulas, we have to make 5 copies of them to compute the next round $g^{\prime}, h^{\prime}, a^{\prime}, b^{\prime}$.
- Compute the following.
- $e=f-g h$
- $g^{\prime}=g+b e$ and $h^{\prime}=h+a e$
- $c=a g^{\prime}+b h^{\prime}-1$
- $a^{\prime}=a(1-c)$ and $b^{\prime}=b(1-c)$.
- If g, h, a, b are small formulas, we have to make 5 copies of them to compute the next round $g^{\prime}, h^{\prime}, a^{\prime}, b^{\prime}$.

Monic Version of Hensel Lifting

- Assume f, g, h are polynomials monic in x.
- Additionally compute polynomials q and r such that $g^{\prime}-g=q g+r$, where $\operatorname{deg}_{x}(r)<\operatorname{deg}_{x}(g)$.
- $\hat{g}=g+r$ and $h=h^{\prime}(1+q)$ are a monic lift of g, h w.r.t. f.
- Advantage: We can avoid the linear system-solving step if we start monic lifting from $g(x, 0)$ and $h(x, 0)$!
- Disadvantage: Implementing it for formulas/ABPs requires making d^{2} many copies of previous lifts in each round.

Monic Version of Hensel Lifting

- Assume f, g, h are polynomials monic in x.
- Additionally compute polynomials q and r such that $g^{\prime}-g=q g+r$, where $\operatorname{deg}_{x}(r)<\operatorname{deg}_{x}(g)$.
- Advantage: We can avoid the linear system-solving step if we start monic lifting from $g(x, 0)$ and $h(x, 0)$!
- Disadvantage: Implementing it for formulas/ABPs requires making d^{2} many copies of previous lifts in each round.

Monic Version of Hensel Lifting

- Assume f, g, h are polynomials monic in x.
- Additionally compute polynomials q and r such that $g^{\prime}-g=q g+r$, where $\operatorname{deg}_{x}(r)<\operatorname{deg}_{x}(g)$.
- $\hat{g}=g+r$ and $\hat{h}=h^{\prime}(1+q)$ are a monic lift of g, h w.r.t. f.
- Advantage: We can avoid the linear system-solving step if we start monic lifting from $g(x, 0)$ and $h(x, 0)$!
- Disadvantage: Implementing it for formulas/ABPs requires making d^{2} many copies of previous lifts in each round.
- Assume f, g, h are polynomials monic in x.
- Additionally compute polynomials q and r such that $g^{\prime}-g=q g+r$, where $\operatorname{deg}_{x}(r)<\operatorname{deg}_{x}(g)$.
- $\hat{g}=g+r$ and $\hat{h}=h^{\prime}(1+q)$ are a monic lift of g, h w.r.t. f.
- Advantage: We can avoid the linear system-solving step if we start monic lifting from $g(x, 0)$ and $h(x, 0)$!
- Disadvantage: Implementing it for formulas/ABPs requires making d^{2} many copies of previous lifts in each round.

Lifted Factor and Actual Factor

Lemma (Actual factor vs lifted factor)
$g \equiv g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)$ for some polynomial h_{t}^{\prime}.

Proof Idea

Inductively ap ply Hensel lifting to both f and factor g starting from $f=g_{0} h_{0}(\bmod y)$ and $g=g_{0} h_{0}^{\prime}(\bmod y)$ respectively.

From the proof, we do not get h_{t}^{\prime} explicitly if we do not know g.

LIFTED FACTOR AND ACTUAL FACTOR

Lemma (Actual factor vs lifted factor)
$g \equiv g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)$ for some polynomial h_{t}^{\prime}.

Proof Idea

Inductively apply Hensel lifting to both f and factor g starting from $f=g_{0} h_{0}(\bmod y)$ and $g=g_{0} h_{0}^{\prime}(\bmod y)$ respectively.

From the proof, we do not get h_{t}^{\prime} explicitly if we do not know g.

Factor Reconstruction via Linear System

- We want to compute g from the Eqn. $g \equiv g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)$.
- Here g_{t} is known but both g and h_{t}^{\prime} are unknown. We know the degree upper bounds of g, g_{t}, h_{t}^{\prime}.
- Compare the coefficients of each monomial $x^{i} y^{j}$ in LHS and RHS of Eqn. $g \equiv g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)$.
- We get a system of linear equations in the unknowns (coefficients of g and h_{t}^{\prime}).
- We want to compute g from the Eqn. $g \equiv g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)$.
- Here g_{t} is known but both g and h_{t}^{\prime} are unknown. We know the degree upper bounds of g, g_{t}, h_{t}^{\prime}.
- Compare the coefficients of each monomial $x^{i} y^{j}$ in LHS and RHS of Eqn. $g \equiv g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)$.
- We get a system of linear equations in the unknowns (coefficients of g and h_{t}^{\prime}).
- We want to compute g from the Eqn. $g \equiv g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)$.
- Here g_{t} is known but both g and h_{t}^{\prime} are unknown. We know the degree upper bounds of g, g_{t}, h_{t}^{\prime}.
- Compare the coefficients of each monomial $x^{i} y^{j}$ in LHS and RHS of Eqn. $g \equiv g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)$.
- We get a system of linear equations in the unknowns (coefficients of g and h_{t}^{\prime}).
- We want to compute g from the Eqn. $g \equiv g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)$.
- Here g_{t} is known but both g and h_{t}^{\prime} are unknown. We know the degree upper bounds of g, g_{t}, h_{t}^{\prime}.
- Compare the coefficients of each monomial $x^{i} y^{j}$ in LHS and RHS of Eqn. $g \equiv g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)$.
- We get a system of linear equations in the unknowns (coefficients of g and h_{t}^{\prime}).
- We want to compute g from the Eqn. $g \equiv g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)$.
- Here g_{t} is known but both g and h_{t}^{\prime} are unknown. We know the degree upper bounds of g, g_{t}, h_{t}^{\prime}.
- Compare the coefficients of each monomial $x^{i} y^{j}$ in LHS and RHS of Eqn. $g \equiv g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)$.
- We get a system of linear equations in the unknowns (coefficients of g and h_{t}^{\prime}).
- Let \tilde{g} be a least degree monic polynomial that satisfies $\tilde{g}=g_{t} \tilde{h}\left(\bmod y^{2^{t}}\right)$ for some \tilde{h}. We prove that $\tilde{g}=g$.
- First prove that \tilde{g} and the factor g have nontrivial gcd by showing that their Resultant is zero.
- As factor g is irreducible, we get g divides \tilde{g}.
- As both \tilde{g} and g are monic polynomials of same degree, they must be equal.
- Let \tilde{g} be a least degree monic polynomial that satisfies $\tilde{g}=g_{t} \tilde{h}\left(\bmod y^{2^{t}}\right)$ for some \tilde{h}. We prove that $\tilde{g}=g$.
- First prove that \tilde{g} and the factor g have nontrivial gcd by showing that their Resultant is zero.
- As factor g is irreducible, we get g divides \tilde{g}.
- As both \tilde{g} and g are monic polynomials of same degree, they must be equal.
- Let \tilde{g} be a least degree monic polynomial that satisfies $\tilde{g}=g_{t} \tilde{h}\left(\bmod y^{2^{t}}\right)$ for some \tilde{h}. We prove that $\tilde{g}=g$.
- First prove that \tilde{g} and the factor g have nontrivial gcd by showing that their Resultant is zero.
- As factor g is irreducible, we get g divides \tilde{g}.
- As both \tilde{g} and g are monic polynomials of same degree, they must be equal.
- Let \tilde{g} be a least degree monic polynomial that satisfies $\tilde{g}=g_{t} \tilde{h}\left(\bmod y^{2^{t}}\right)$ for some \tilde{h}. We prove that $\tilde{g}=g$.
- First prove that \tilde{g} and the factor g have nontrivial gcd by showing that their Resultant is zero.
- As factor g is irreducible, we get g divides \tilde{g}.
- As both \tilde{g} and g are monic polynomials of same degree, they must be equal.
- The resultant $r(y)=\operatorname{Res}_{x}(g, \tilde{g})$ is a polynomial (of degree $\leq 2 d^{2}$) in y defined via determinant of Sylvester matrix.
- $\operatorname{Res}_{x}(g, \tilde{g})=0 \Longleftrightarrow g, \tilde{g}$ share nontrivial gcd.

GCD and Resultants

- The resultant $r(y)=\operatorname{Res}_{x}(g, \tilde{g})$ is a polynomial (of degree $\leq 2 d^{2}$) in y defined via determinant of Sylvester matrix.
- $\operatorname{Res}_{x}(g, \tilde{g})=0 \Longleftrightarrow g, \tilde{g}$ share nontrivial gcd.

GCD and Resultants

- The resultant $r(y)=\operatorname{Res}_{x}(g, \tilde{g})$ is a polynomial (of degree $\leq 2 d^{2}$) in y defined via determinant of Sylvester matrix.
- $\operatorname{Res}_{x}(g, \tilde{g})=0 \Longleftrightarrow g, \tilde{g}$ share nontrivial gcd.
- Resultant as linear combination: $\exists u, v$ s.t $r(y)=u g+v \tilde{g}$.
- Plug-in $g=g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)$ and $\tilde{g}=g_{t} \tilde{h}\left(\bmod y^{2^{t}}\right)$.
- So we get $r(y)=u g+v \tilde{g} \equiv g_{t}\left(u h_{t}^{\prime}+v \tilde{h}\right)\left(\bmod y^{2^{t}}\right)$.
- Let w denote $\left(u h_{t}^{\prime}+v \tilde{h}\right)$. So we have $r(y)=g_{t} w\left(\bmod y^{2}\right)$.
- Assume for sake of contradiction $r(y)$ is nonzero.
- Resultant as linear combination: $\exists u$, v s.t $r(y)=u g+v \tilde{g}$.
- Plug-in $g=g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)$ and $\tilde{g}=g_{t} \tilde{h}\left(\bmod y^{2^{t}}\right)$.
- So we get $r(y)=u g+v \tilde{g} \equiv g_{t}\left(u h_{t}^{\prime}+v \tilde{h}\right)\left(\bmod y^{2^{t}}\right)$
- Let w denote $\left(u h_{t}^{\prime}+v h\right)$. So we have $r(y)=g_{t} w\left(\bmod y^{2^{t}}\right)$
- Assume for sake of contradiction $r(y)$ is nonzero.
- Resultant as linear combination: $\exists u, v$ s.t $r(y)=u g+v \tilde{g}$.
- Plug-in $g=g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)$ and $\tilde{g}=g_{t} \tilde{h}\left(\bmod y^{2^{t}}\right)$.
- So we get $r(y)=u g+v \tilde{g} \equiv g_{t}\left(u h_{t}^{\prime}+v \tilde{h}\right)\left(\bmod y^{2^{t}}\right)$.
- Let w denote $\left(u h_{t}^{\prime}+v h\right)$. So we have $r(y)=g_{t} w\left(\bmod y^{2^{t}}\right)$
- Assume for sake of contradiction $r(y)$ is nonzero.
- Resultant as linear combination: $\exists u$, v s.t $r(y)=u g+v \tilde{g}$.
- Plug-in $g=g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)$ and $\tilde{g}=g_{t} \tilde{h}\left(\bmod y^{2^{t}}\right)$.
- So we get $r(y)=u g+v \tilde{g} \equiv g_{t}\left(u h_{t}^{\prime}+v \tilde{h}\right)\left(\bmod y^{2^{t}}\right)$.
- Let w denote $\left(u h_{t}^{\prime}+v \tilde{h}\right)$. So we have $r(y)=g_{t} w\left(\bmod y^{2^{t}}\right)$.
- Assume for sake of contradiction $r(y)$ is nonzero.
- Resultant as linear combination: $\exists u, v$ s.t $r(y)=u g+v \tilde{g}$.
- Plug-in $g=g_{t} h_{t}^{\prime}\left(\bmod y^{2^{t}}\right)$ and $\tilde{g}=g_{t} \tilde{h}\left(\bmod y^{2^{t}}\right)$.
- So we get $r(y)=u g+v \tilde{g} \equiv g_{t}\left(u h_{t}^{\prime}+v \tilde{h}\right)\left(\bmod y^{2^{t}}\right)$.
- Let w denote $\left(u h_{t}^{\prime}+v \tilde{h}\right)$. So we have $r(y)=g_{t} w\left(\bmod y^{2^{t}}\right)$.
- Assume for sake of contradiction $r(y)$ is nonzero.
- g_{t} is monic in x and $w \neq 0 \Longrightarrow$ coefficient of highest power of x in $g_{t} w\left(\bmod y^{2^{t}}\right)$ is nonzero.
- On the other hand, $r(y)$ is free of x. That gives a contradiction. Thus $r(y)=0\left(\bmod y^{2^{t}}\right)$.
- But here g_{t} is nonmonic. So the coefficient of highest power of x in g_{t} is a multiple of y.
- Thus the highest power of x in $g_{t} w$ may vanish modulo $y^{2^{t}}$ Can we still save the argument?
- g_{t} is monic in x and $w \neq 0 \Longrightarrow$ coefficient of highest power of x in $g_{t} w\left(\bmod y^{2^{t}}\right)$ is nonzero.
- On the other hand, $r(y)$ is free of x. That gives a contradiction. Thus $r(y)=0\left(\bmod y^{2^{t}}\right)$.
- But here g_{t} is nonmonic. So the coefficient of highest power of x in g_{t} is a multiple of y.
- Thus the highest power of x in gtw may vanish modulo $y^{2 t}$ Can we still save the argument?
- g_{t} is monic in x and $w \neq 0 \Longrightarrow$ coefficient of highest power of x in $g_{t} w\left(\bmod y^{2^{t}}\right)$ is nonzero.
- On the other hand, $r(y)$ is free of x. That gives a contradiction. Thus $r(y)=0\left(\bmod y^{2^{t}}\right)$.
- But here g_{t} is nonmonic. So the coefficient of highest power of x in g_{t} is a multiple of y.
- Thus the highest power of x in $g_{t} w$ may vanish modulo $y^{2^{t}}$ Can we still save the argument?
- g_{t} is monic in x and $w \neq 0 \Longrightarrow$ coefficient of highest power of x in $g_{t} w\left(\bmod y^{2^{t}}\right)$ is nonzero.
- On the other hand, $r(y)$ is free of x. That gives a contradiction. Thus $r(y)=0\left(\bmod y^{2^{t}}\right)$.
- But here g_{t} is nonmonic. So the coefficient of highest power of x in g_{t} is a multiple of y.
- Thus the highest power of x in $g_{t} w$ may vanish modulo $y^{2^{t}}$. Can we still save the argument?
- Idea: Look at the least power of y in both w and g_{t}.
- View g_{t} and w as polynomials in y with coefficients in x. Suppose $g_{t}=c_{0}(x)+c_{1}(x) y+\ldots+c_{d^{\prime}}(x) y^{d^{\prime}}$.
- Now, $g_{t} \equiv g_{0}(\bmod y)$, so $c_{0}(x)=g_{0}(x)$, a nonzero poly in x.
- The least power of y in $g_{t} w$ has coefficient $g_{0}(x) w_{j}(x)$, a nonzero polynomial in x.
- Thus $g_{t} w \bmod y^{2^{t}}$ is not free of x. Contradiction. Thus, $r(y)$ must be $0 \bmod y^{2^{t}}$. If $2^{t} \geq 2 d^{2}+1$, then $r(y)=0$. QED.
- Idea: Look at the least power of y in both w and g_{t}.
- View g_{t} and w as polynomials in y with coefficients in x. Suppose $g_{t}=c_{0}(x)+c_{1}(x) y+\ldots+c_{d^{\prime}}(x) y^{d^{\prime}}$.
- The least power of y in $g_{t} w$ has coefficient $g_{0}(x) w_{j}(x)$, a nonzero polynomial in x.
- Thus $g_{t} w \bmod y^{2^{2}}$ is not free of x. Contradiction. Thus, $r(y)$ must be $0 \bmod y^{2^{t}}$. If $2^{t} \geq 2 d^{2}+1$, then $r(y)=0$. QED.
- Idea: Look at the least power of y in both w and g_{t}.
- View g_{t} and w as polynomials in y with coefficients in x. Suppose $g_{t}=c_{0}(x)+c_{1}(x) y+\ldots+c_{d^{\prime}}(x) y^{d^{\prime}}$.
- Now, $g_{t} \equiv g_{0}(\bmod y)$, so $c_{0}(x)=g_{0}(x)$, a nonzero poly in x.
- The least power of y in $g_{t} w$ has coefficient $g_{0}(x) w_{j}(x)$, a nonzero polynomial in x.
- Thus grw mod $y^{2 t}$ is not free of x. Contradiction. Thus, $r(y)$ must be $0 \bmod y^{2^{t}}$. If $2^{t} \geq 2 d^{2}+1$, then $r(y)=0$. QED.
- Idea: Look at the least power of y in both w and g_{t}.
- View g_{t} and w as polynomials in y with coefficients in x. Suppose $g_{t}=c_{0}(x)+c_{1}(x) y+\ldots+c_{d^{\prime}}(x) y^{d^{\prime}}$.
- Now, $g_{t} \equiv g_{0}(\bmod y)$, so $c_{0}(x)=g_{0}(x)$, a nonzero poly in x.
- The least power of y in $g_{t} w$ has coefficient $g_{0}(x) w_{j}(x)$, a nonzero polynomial in x.
- Thus $g_{t} w \bmod y^{2^{t}}$ is not free of x. Contradiction. Thus, must be $0 \bmod y^{2^{t}}$. If $2^{t} \geq 2 d^{2}+1$, then $r(y)=0$. QED.
- Idea: Look at the least power of y in both w and g_{t}.
- View g_{t} and w as polynomials in y with coefficients in x. Suppose $g_{t}=c_{0}(x)+c_{1}(x) y+\ldots+c_{d^{\prime}}(x) y^{d^{\prime}}$.
- Now, $g_{t} \equiv g_{0}(\bmod y)$, so $c_{0}(x)=g_{0}(x)$, a nonzero poly in x.
- The least power of y in $g_{t} w$ has coefficient $g_{0}(x) w_{j}(x)$, a nonzero polynomial in x.
- Thus $g_{t} w \bmod y^{2^{t}}$ is not free of x. Contradiction. Thus, $r(y)$ must be $0 \bmod y^{2^{t}}$. If $2^{t} \geq 2 d^{2}+1$, then $r(y)=0$. QED.
- Let $f\left(x, z_{1}, \ldots, z_{n}\right)$ be the given polynomial to be factored
- Create a new polynomial $\widehat{f}(x, y, z)=f\left(x, y z_{1}, \ldots, y z_{n}\right)$
- Consider \widehat{f} as a bivariate in x and y with coefficients in $\mathbb{F}[\boldsymbol{z}]$.
- To get back f from \widehat{f}, simply put y to 1 in \widehat{f}.
- Putting y to 0 in \widehat{f}, we get univariate $\widehat{f}(x)$.
- Let $f\left(x, z_{1}, \ldots, z_{n}\right)$ be the given polynomial to be factored
- Create a new polynomial $\widehat{f}(x, y, \boldsymbol{z})=f\left(x, y z_{1}, \ldots, y z_{n}\right)$
- Consider \widehat{f} as a bivariate in x and y with coefficients in $\mathbb{F}[\boldsymbol{z}]$.
- To get back f from \widehat{f}, simply put y to 1 in \widehat{f}
- Putting y to 0 in \widehat{f}, we get univariate $\widehat{f}(x)$.
- Let $f\left(x, z_{1}, \ldots, z_{n}\right)$ be the given polynomial to be factored
- Create a new polynomial $\widehat{f}(x, y, \boldsymbol{z})=f\left(x, y z_{1}, \ldots, y z_{n}\right)$
- Consider \widehat{f} as a bivariate in x and y with coefficients in $\mathbb{F}[\boldsymbol{z}]$.
- To get back f from \widehat{f}, simply put y to 1 in \widehat{f}.
- Putting y to 0 in \hat{f}, we get univariate $\hat{f}(x)$.
- Let $f\left(x, z_{1}, \ldots, z_{n}\right)$ be the given polynomial to be factored
- Create a new polynomial $\widehat{f}(x, y, \boldsymbol{z})=f\left(x, y z_{1}, \ldots, y z_{n}\right)$
- Consider \widehat{f} as a bivariate in x and y with coefficients in $\mathbb{F}[\boldsymbol{z}]$.
- To get back f from \widehat{f}, simply put y to 1 in \widehat{f}.
- Putting y to 0 in \widehat{f}, we get univariate $\widehat{f}(x)$.
- The reduction to bivariate seems cheap.
- But we have to pay the price in the jump step. Our linear system now has coefficients from $\mathbb{F}\left(z_{1}, \ldots, z_{n}\right)$.
- Using Cramer's rule, the solutions can be expressed via Determinants/ABPs.
- Derandomization of the jump step requires PIT for ABPs.
- The reduction to bivariate seems cheap.
- But we have to pay the price in the jump step. Our linear system now has coefficients from $\mathbb{F}\left(z_{1}, \ldots, z_{n}\right)$.
- Using Cramer's rule, the solutions can be expressed via Determinants/ABPs.
- Derandomization of the jump step requires PIT for ABPs.
- The reduction to bivariate seems cheap.
- But we have to pay the price in the jump step. Our linear system now has coefficients from $\mathbb{F}\left(z_{1}, \ldots, z_{n}\right)$.
- Using Cramer's rule, the solutions can be expressed via Determinants/ABPs.
- Derandomization of the jump step requires PIT for ABPs.
- The reduction to bivariate seems cheap.
- But we have to pay the price in the jump step. Our linear system now has coefficients from $\mathbb{F}\left(z_{1}, \ldots, z_{n}\right)$.
- Using Cramer's rule, the solutions can be expressed via Determinants/ABPs.
- Derandomization of the jump step requires PIT for ABPs.

Factorization and PIT

- Test if $g\left(x_{1}, \ldots, x_{n}\right)$ divides $f\left(x_{1}, \ldots, x_{n}\right)$.
- Reduces to Polynomial Identity Testing.
- We don't know a deterministic poly-time algorithm even when f, g are sparse.
- Test if $g\left(x_{1}, \ldots, x_{n}\right)$ divides $f\left(x_{1}, \ldots, x_{n}\right)$.
- Reduces to Polynomial Identity Testing.
- We don't know a deterministic poly-time algorithm even when f, g are sparse.
- Test if $g\left(x_{1}, \ldots, x_{n}\right)$ divides $f\left(x_{1}, \ldots, x_{n}\right)$.
- Reduces to Polynomial Identity Testing.
- We don't know a deterministic poly-time algorithm even when f, g are sparse.
- Whether a linear polynomial divides a sparse polynomial can be tested in polynomial time.
- $f\left(x_{1}, \ldots, x_{n}\right)$ is divisible by $x_{1}-\ell\left(x_{2}, \ldots, x_{n}\right)$ iff $f\left(\ell, x_{2}, \ldots, x_{n}\right)=0$.
- Semidiagonal model: $\sum m_{i} l^{e_{i}}$ where m_{i} is a monomial and ℓ are linear polynomials [Saha-Saptharishi-Saxena 2010].
- Testing if a quadratic polynomial divides a s-sparse polynomial in $s^{\log s}$ time [Forbes 2015]. Reduces to PIT of sums of monomials times powers of quadratics.
- If f, g are sparse polynomials with bounded individual degrees, [Volkovich 2017] gave a poly-time test.
- Whether a linear polynomial divides a sparse polynomial can be tested in polynomial time.
- $f\left(x_{1}, \ldots, x_{n}\right)$ is divisible by $x_{1}-\ell\left(x_{2}, \ldots, x_{n}\right)$ iff $f\left(\ell, x_{2}, \ldots, x_{n}\right)=0$.
- Semidiagonal model: $\Sigma m_{i} \ell^{e_{i}}$ where m_{i} is a monomial and ℓ are linear polynomials [Saha-Saptharishi-Saxena 2010]
- Testing if a quadratic polynomial divides a s-sparse polynomial in $s^{\log s}$ time [Forbes 2015]. Reduces to PIT of sums of monomials times powers of quadratics.
- If f, g are sparse polynomials with bounded individual degrees, [Volkovich 2017] gave a poly-time test.
- Whether a linear polynomial divides a sparse polynomial can be tested in polynomial time.
- $f\left(x_{1}, \ldots, x_{n}\right)$ is divisible by $x_{1}-\ell\left(x_{2}, \ldots, x_{n}\right)$ iff $f\left(\ell, x_{2}, \ldots, x_{n}\right)=0$.
- Semidiagonal model: $\Sigma m_{i} \ell^{e_{i}}$ where m_{i} is a monomial and ℓ are linear polynomials [Saha-Saptharishi-Saxena 2010].
- Testing if a quadratic polynomial divides a s-sparse polynomial in $s^{\log s}$ time [Forbes 2015]. Reduces to PIT of sums of monomials times powers of quadratics.
- If f, g are sparse polynomials with bounded individual degrees, [Volkovich 2017] gave a poly-time test.
- Whether a linear polynomial divides a sparse polynomial can be tested in polynomial time.
- $f\left(x_{1}, \ldots, x_{n}\right)$ is divisible by $x_{1}-\ell\left(x_{2}, \ldots, x_{n}\right)$ iff $f\left(\ell, x_{2}, \ldots, x_{n}\right)=0$.
- Semidiagonal model: $\Sigma m_{i} \ell^{e_{i}}$ where m_{i} is a monomial and ℓ are linear polynomials [Saha-Saptharishi-Saxena 2010].
- Testing if a quadratic polynomial divides a s-sparse polynomial in $s^{\log s}$ time [Forbes 2015]. Reduces to PIT of sums of monomials times powers of quadratics.
- If f, g are sparse polynomials with bounded individual degrees, [Volkovich 2017] gave a poly-time test.
- Whether a linear polynomial divides a sparse polynomial can be tested in polynomial time.
- $f\left(x_{1}, \ldots, x_{n}\right)$ is divisible by $x_{1}-\ell\left(x_{2}, \ldots, x_{n}\right)$ iff $f\left(\ell, x_{2}, \ldots, x_{n}\right)=0$.
- Semidiagonal model: $\Sigma m_{i} \ell^{e_{i}}$ where m_{i} is a monomial and ℓ are linear polynomials [Saha-Saptharishi-Saxena 2010].
- Testing if a quadratic polynomial divides a s-sparse polynomial in $s^{\log s}$ time [Forbes 2015]. Reduces to PIT of sums of monomials times powers of quadratics.
- If f, g are sparse polynomials with bounded individual degrees, [Volkovich 2017] gave a poly-time test.

Factorization Testing

- Given sparse polynomials f, g_{1}, \ldots, g_{k}, test if $f=\prod_{i=1}^{k} g_{i}$. Or more generally, $f=\prod_{i} g_{i}^{e_{i}}$.
- Testing in deterministic polynomial time open, even when g_{i} have bounded degree.
- More general question: Given sparse polynomials f_{1}, \ldots, f_{k} and g_{1}, \ldots, g_{r}, test if $\prod_{i=1}^{r} f_{i}=\prod_{i=1}^{k} g_{i}$.
- Bisht and Volkovich recently solved a related question. They assume f_{i}, g_{i} are sparse and have bounded individual degrees.
- Given sparse polynomials f, g_{1}, \ldots, g_{k}, test if $f=\prod_{i=1}^{k} g_{i}$. Or more generally, $f=\prod_{i} g_{i}^{e_{i}}$.
- Testing in deterministic polynomial time open, even when g_{i} have bounded degree.
- More general question: Given sparse polynomials f_{1}, \ldots, f_{k} and g_{1}, \ldots, g_{r}, test if $\prod_{i=1}^{r} f_{i}=\prod_{i=1}^{k} g_{i}$.
- Bisht and Volkovich recently solved a related question. They assume f_{i}, g_{i} are sparse and have bounded individual degrees.
- Given sparse polynomials f, g_{1}, \ldots, g_{k}, test if $f=\prod_{i=1}^{k} g_{i}$. Or more generally, $f=\prod_{i} g_{i}^{e_{i}}$.
- Testing in deterministic polynomial time open, even when g_{i} have bounded degree.
- More general question: Given sparse polynomials f_{1}, \ldots, f_{k} and g_{1}, \ldots, g_{r}, test if $\prod_{i=1}^{r} f_{i}=\prod_{i=1}^{k} g_{i}$.
- Bisht and Volkovich recently solved a related question. They assume f_{i}, g_{i} are sparse and have bounded individual degrees.
- Given sparse polynomials f, g_{1}, \ldots, g_{k}, test if $f=\prod_{i=1}^{k} g_{i}$. Or more generally, $f=\prod_{i} g_{i}^{e_{i}}$.
- Testing in deterministic polynomial time open, even when g_{i} have bounded degree.
- More general question: Given sparse polynomials f_{1}, \ldots, f_{k} and g_{1}, \ldots, g_{r}, test if $\prod_{i=1}^{r} f_{i}=\prod_{i=1}^{k} g_{i}$.
- Bisht and Volkovich recently solved a related question. They assume f_{i}, g_{i} are sparse and have bounded individual degrees.

Factoring-PIT Equivalence

- Derandomization of Multivariate Factoring over \mathbb{Q} reduces to derandomization of PIT [Kopparty-Saraf-Shpilka 2015].
- This is known in both black-box and white-box settings.
- Can we derandomize factoring in some special cases, such as sparse polynomials?

Factoring-PIT Equivalence

- Derandomization of Multivariate Factoring over \mathbb{Q} reduces to derandomization of PIT [Kopparty-Saraf-Shpilka 2015].
- This is known in both black-box and white-box settings.
- Can we derandomize factoring in some special cases, such as sparse polynomials?
- Derandomization of Multivariate Factoring over \mathbb{Q} reduces to derandomization of PIT [Kopparty-Saraf-Shpilka 2015].
- This is known in both black-box and white-box settings.
- Can we derandomize factoring in some special cases, such as sparse polynomials?

Frontier questions

- Given an n-variate degree d polynomial of sparsity $\leq s$, test if it is irreducible in deterministic $\operatorname{POLY}(n, s, d)$ time.
- Challenge: Currently, it requires PIT for symbolic Determinants.
- Given two n-variate degree d polynomial of sparsity $\leq s$, test if they are coprime in deterministic $\operatorname{POLY}(n, s, d)$ time.
- Challenge: The resultant of two sparse polynomials may not be sparse.

Frontier questions

- Given an n-variate degree d polynomial of sparsity $\leq s$, test if it is irreducible in deterministic $\operatorname{POLY}(n, s, d)$ time.
- Challenge: Currently, it requires PIT for symbolic Determinants.
- Given two n-variate degree d polynomial of sparsity $\leq s$, test if they are coprime in deterministic $\operatorname{POLY}(n, s, d)$ time.
- Challenge: The resultant of two sparse polynomials may not be sparse.
- Given an n-variate degree d polynomial of sparsity $\leq s$, test if it is irreducible in deterministic $\operatorname{POLY}(n, s, d)$ time.
- Challenge: Currently, it requires PIT for symbolic Determinants.
- Given two n-variate degree d polynomial of sparsity $\leq s$, test if they are coprime in deterministic $\operatorname{POLY}(n, s, d)$ time.
- Challenge: The resultant of two sparse polynomials may not be sparse.
- Given an n-variate degree d polynomial of sparsity $\leq s$, test if it is irreducible in deterministic $\operatorname{POLY}(n, s, d)$ time.
- Challenge: Currently, it requires PIT for symbolic Determinants.
- Given two n-variate degree d polynomial of sparsity $\leq s$, test if they are coprime in deterministic $\operatorname{POLY}(n, s, d)$ time.
- Challenge: The resultant of two sparse polynomials may not be sparse.
- Given a black box computing a multivariate polynomial f, black boxes of the irreducible factors of f can be computed in randomized polynomial time [Kaltofen-Trager 1991].
- Dimension reduction: Randomly project to bivariates.
- This works due to an effective version of Hilbert's irreducibility theorem.
- If $f\left(x, z_{1}, \ldots, z_{n}\right)$ is irreducible, then $f\left(x, \beta_{1}+\alpha_{1} y, \ldots, \beta_{n}+\alpha_{n} y\right)$ is irreducible with high probability if β_{i}, α_{i} picked at random.
- Currently, derandomization of this theorem for sparse polynomials reduces to ABP PIT.
- Given a black box computing a multivariate polynomial f, black boxes of the irreducible factors of f can be computed in randomized polynomial time [Kaltofen-Trager 1991].
- Dimension reduction: Randomly project to bivariates.
- This works due to an effective version of Hilbert's irreducibility theorem.
- If $f\left(x, z_{1}, \ldots, z_{n}\right)$ is irreducible, then $f\left(x, \beta_{1}+\alpha_{1} y, \ldots, \beta_{n}+\alpha_{n} y\right)$ is irreducible with high probability if β_{i}, α_{i} picked at random.
- Currently, derandomization of this theorem for sparse polynomials reduces to ABP PIT.
- Given a black box computing a multivariate polynomial f, black boxes of the irreducible factors of f can be computed in randomized polynomial time [Kaltofen-Trager 1991].
- Dimension reduction: Randomly project to bivariates.
- This works due to an effective version of Hilbert's irreducibility theorem.
- If $f\left(x, z_{1}, \ldots, z_{n}\right)$ is irreducible, then $f\left(x, \beta_{1}+\alpha_{1} y, \ldots, \beta_{n}+\alpha_{n} y\right)$ is irreducible with high probability if β_{i}, α_{i} picked at random.
- Currently, derandomization of this theorem for sparse polynomials reduces to ABP PIT
- Given a black box computing a multivariate polynomial f, black boxes of the irreducible factors of f can be computed in randomized polynomial time [Kaltofen-Trager 1991].
- Dimension reduction: Randomly project to bivariates.
- This works due to an effective version of Hilbert's irreducibility theorem.
- If $f\left(x, z_{1}, \ldots, z_{n}\right)$ is irreducible, then $f\left(x, \beta_{1}+\alpha_{1} y, \ldots, \beta_{n}+\alpha_{n} y\right)$ is irreducible with high probability if β_{i}, α_{i} picked at random.
- Currently, derandomization of this theorem for sparse polynomials reduces to ABP PIT
- Given a black box computing a multivariate polynomial f, black boxes of the irreducible factors of f can be computed in randomized polynomial time [Kaltofen-Trager 1991].
- Dimension reduction: Randomly project to bivariates.
- This works due to an effective version of Hilbert's irreducibility theorem.
- If $f\left(x, z_{1}, \ldots, z_{n}\right)$ is irreducible, then $f\left(x, \beta_{1}+\alpha_{1} y, \ldots, \beta_{n}+\alpha_{n} y\right)$ is irreducible with high probability if β_{i}, α_{i} picked at random.
- Currently, derandomization of this theorem for sparse polynomials reduces to ABP PIT.
- $f\left(x, z_{1}, \ldots, z_{n}\right)$ may not be monic in x.
- Apply the shift: $z_{i} \mapsto z_{i}+\alpha_{i} x$ where α_{i} picked at random.
- Say, factors $g\left(x, z_{1}, \ldots, z_{n}\right), h\left(x, z_{1}, \ldots, z_{n}\right)$ are coprime. But $g(x, 0, \ldots, 0)$ and $h(x, 0, \ldots, 0)$ are not coprime.
- If the resultant (determinant of Sylvester matrix) of them is nonzero at some point $\alpha_{1}, \ldots, \alpha_{n}$, translate by that point.
- We need PIT also in the linear system-solving step.
- $f\left(x, z_{1}, \ldots, z_{n}\right)$ may not be monic in x.
- Apply the shift: $z_{i} \mapsto z_{i}+\alpha_{i} x$ where α_{i} picked at random.
- Say, factors $g\left(x, z_{1}, \ldots, z_{n}\right), h\left(x, z_{1}, \ldots, z_{n}\right)$ are coprime. But $g(x, 0, \ldots, 0)$ and $h(x, 0, \ldots, 0)$ are not coprime.
- If the resultant (determinant of Sylvester matrix) of them is nonzero at some point $\alpha_{1}, \ldots, \alpha_{n}$, translate by that point.
- We need PIT also in the linear system-solving step.
- $f\left(x, z_{1}, \ldots, z_{n}\right)$ may not be monic in x.
- Apply the shift: $z_{i} \mapsto z_{i}+\alpha_{i} x$ where α_{i} picked at random.
- Say, factors $g\left(x, z_{1}, \ldots, z_{n}\right), h\left(x, z_{1}, \ldots, z_{n}\right)$ are coprime. But $g(x, 0, \ldots, 0)$ and $h(x, 0, \ldots, 0)$ are not coprime.
- If the resultant (determinant of Sylvester matrix) of them is nonzero at some point $\alpha_{1}, \ldots, \alpha_{n}$, translate by that point.
- We need PIT also in the linear system-solving step.
- $f\left(x, z_{1}, \ldots, z_{n}\right)$ may not be monic in x.
- Apply the shift: $z_{i} \mapsto z_{i}+\alpha_{i} x$ where α_{i} picked at random.
- Say, factors $g\left(x, z_{1}, \ldots, z_{n}\right), h\left(x, z_{1}, \ldots, z_{n}\right)$ are coprime. But $g(x, 0, \ldots, 0)$ and $h(x, 0, \ldots, 0)$ are not coprime.
- If the resultant (determinant of Sylvester matrix) of them is nonzero at some point $\alpha_{1}, \ldots, \alpha_{n}$, translate by that point.
- We need PIT also in the linear system-solving step.
- $f\left(x, z_{1}, \ldots, z_{n}\right)$ may not be monic in x.
- Apply the shift: $z_{i} \mapsto z_{i}+\alpha_{i} x$ where α_{i} picked at random.
- Say, factors $g\left(x, z_{1}, \ldots, z_{n}\right), h\left(x, z_{1}, \ldots, z_{n}\right)$ are coprime. But $g(x, 0, \ldots, 0)$ and $h(x, 0, \ldots, 0)$ are not coprime.
- If the resultant (determinant of Sylvester matrix) of them is nonzero at some point $\alpha_{1}, \ldots, \alpha_{n}$, translate by that point.
- We need PIT also in the linear system-solving step.
- Koiran and Ressyare (2018): Test if $f\left(x_{1}, \ldots, x_{n}\right)$ is of the form $f(x)=\ell_{1}(x)^{\alpha_{1}} \cdots \ell_{n}(x)^{\alpha_{n}}$. If yes, output the linear factors.
- They give three randomized algorithms that are different from Kaltofen and Trager's algorithm.
- Koiran and Ressyare (2018): Test if $f\left(x_{1}, \ldots, x_{n}\right)$ is of the form $f(x)=\ell_{1}(x)^{\alpha_{1}} \cdots \ell_{n}(x)^{\alpha_{n}}$. If yes, output the linear factors.
- They give three randomized algorithms that are different from Kaltofen and Trager's algorithm.
- The first one uses the characterization of the Lie algebras of the polynomials in the orbit of a monomial.
- The second algorithm reconstructs a factorization from several bivariate projections.
- The third algorithm reconstructs it from the determination of the zero set of the input polynomial, which is a union of hyperplanes.
- The first one uses the characterization of the Lie algebras of the polynomials in the orbit of a monomial.
- The second algorithm reconstructs a factorization from several bivariate projections.
- The third algorithm reconstructs it from the determination of the zero set of the input polynomial, which is a union of hyperplanes.
- The first one uses the characterization of the Lie algebras of the polynomials in the orbit of a monomial.
- The second algorithm reconstructs a factorization from several bivariate projections.
- The third algorithm reconstructs it from the determination of the zero set of the input polynomial, which is a union of hyperplanes.

DETERMINISTIC FACTORING IN SPECIAL CASES

- Given a black box computing product of linear/bounded degree polynomials, output the factors in polynomial time.
- Over \mathbb{Q}, this can done.
- Work under progress: Given a black-box computing product of sparse polynomials with bounded individual degrees, output factors in polynomial time.
- Note that we cannot directly use Bhargava-Saraf-Volkovich: They assume the input is sparse and have bounded individual degree

DETERMINISTIC FACTORING IN SPECIAL CASES

- Given a black box computing product of linear/bounded degree polynomials, output the factors in polynomial time.
- Over \mathbb{Q}, this can done.
- Work under progress: Given a black-box computing product of sparse polynomials with bounded individual degrees, output factors in polynomial time.
- Note that we cannot directly use Bhargava-Saraf-Volkovich: They assume the input is sparse and have bounded individual degree.
- Given a black box computing product of linear/bounded degree polynomials, output the factors in polynomial time.
- Over \mathbb{Q}, this can done.
- Work under progress: Given a black-box computing product of sparse polynomials with bounded individual degrees, output factors in polynomial time.
- Note that we cannot directly use Bhargava-Saraf-Volkovich: They assume the input is sparse and have bounded individual degree.
- Open: All the factors of size s formulas have size $\operatorname{POLY}(s)$ formulas?
- If not, what are the candidate counterexamples?
- Hensel lifting/Newton iteration may have further applications in algebraic complexity.
- Open: Given a black-box that computes product of two sparse polynomials, output the sparse factors in deterministic polynomial time.
- Open: All the factors of size s formulas have size $\operatorname{POLY}(s)$ formulas?
- If not, what are the candidate counterexamples?
- Hensel lifting/Newton iteration may have further applications in algebraic complexity.
- Open: Given a black-box that computes product of two sparse polynomials, output the sparse factors in deterministic polynomial time.
- Open: All the factors of size s formulas have size $\operatorname{POLY}(s)$ formulas?
- If not, what are the candidate counterexamples?
- Hensel lifting/Newton iteration may have further applications in algebraic complexity.
- Open: Given a black-box that computes product of two sparse polynomials, output the sparse factors in deterministic polynomial time.
- Open: All the factors of size s formulas have size $\operatorname{POLY}(s)$ formulas?
- If not, what are the candidate counterexamples?
- Hensel lifting/Newton iteration may have further applications in algebraic complexity.
- Open: Given a black-box that computes product of two sparse polynomials, output the sparse factors in deterministic polynomial time.

Thank You!

