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The GCT approach



Orbit closure membership

• Let W = Cn, and let P(Sd(W ∗)) denote the projective space of

homogeneous polynomials of degree d over W .

• GL(W ) � P(Sd(W ∗)), a natural action

(f ,M)→ f ◦MT

• Ωf := f ◦ GL(W ) ⊆ P(Sd(W ∗)), the orbit of f , Ωf its Zariski closure

Fundamental problem of algebraic complexity

Given f , g ∈ P(Sd(W ∗)) is g ∈ Ωf ?

This problem is related to the P vs NP problem in complexity theory.
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Actions on polynomials

G = GL(2), V , polynomials of degree 2 in {x1, x2}.

q g =

(
1 2

0 2

)
, f1 = x2

1 .

• g · f1 = (x1 + 2x2)2 = x2
1 + 4x2

2 + 4x1x2.

q g =

(
1 2

3 1

)
, f2 = x1x2.

• g · f2 = (x1 + 2x2)(3x1 + x2) = 3x2
1 + 7x1x2 + 2x2

2
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Determinant versus Permanent

• W = Cn2 , f = Determinant(x11, . . . , xnn) ∈ Sn(x11, . . . , xnn)

• The stabilizer of Determinant is S(GL(n)× GL(n)) o Z2 ⊆ SL(n2),

(A,B) sending X to AXB, Z2 sending X to XT .

• The stabilizer of Determinant, GDet , is reductive.

• W = Cm2

, f = Permanent(x11, . . . , xmm) ∈ Sm(x11, . . . , xmm)

• The stabilizer of Permanent: (Mn,Mn) o Z2 ⊆ SL(m2), Mn being

monomial matrices.

• The stabilizer of Permanent, GPerm, is reductive.

• The holy grail of algebraic complexity Let m < n. Is

xn−m
nn Permm ∈ Detn?

• Conjecture: [Valiant 79, Mumuley-Sohoni 02] Not true when n is

subexponential in m
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Reductive stabilizers

• Is xn−m
nn Permm ∈ O(Detn)?

• The GCT approach - rests on the fact that the forms (Detn,Permm)

have distinctive reductive stabilizers, which characterize the form - any

polynomial with the same stabilizer as Detn is a multiple of Detn.

• GDet reductive implies the orbit GL(W )/GDet is an affine variety,

[Matsushima].

• The coordinate ring of the orbit of Determinant is C[W ]GDet

• The boundary of the closure of an affine variety is empty or has pure

codimension one.

• The symmetries of Detn,Permm, should help us solve Valiant’s

conjecture.

C[O(Detn)]→ C[O(xn−m
nn permm)]→ 0

Information about xn−m
nn Permm not being in the orbit closure of Detn

should be present in their coordinate rings
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Representation theoretic obstructions

• The SL(n2) orbit of Detn is closed, we say it is stable.

• The SL(m2) orbit of Permm is closed. Permm is stable. xn−m
nn Permm is

NOT stable

• Each homogeneous piece of their coordinate rings is a representation of

GL(W ).

• GL(W )→ GL(C[O(Detn)]d), a group homomorphism.

• GL(W )-representations are characterized by combinatorial data-like how

an integer splits into its prime factors. The prime representations are

called irreducible representations. The number of times one such

irreducible representation occurs is its multiplicity.

• Multiplicities of representations as obstructions

If the multiplicity of an irreducible GL(W ) module Vλ occurring in

C[O(xn−m
nn Permm)]d is more than the multiplicity of Vλ in C[O(Detn)]d ,

xn−m
nn Permm is not in the orbit closure of detn [Mulmuley-Sohoni]

• No Occurrence Obstruction Conjecture: When n is subexponential in m,

for infinitely many d , there are irreducible representations which occur in

C[O(xn−m
nn Permm)]d but do not occur in C[O(Detn)]d .
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No Occurrence obstruction

• [Ikenmeyer, Panova,17]

• [Bürgisser, Ikenmeyer, Panova,18]

• When n > m26, every irreducible representation occurring in

C[O(xn−m
nn permm)]d occurs in C[O(detn)]d .

No occurrence as stated is not true.

[Adsul, Sohoni, S,22] A geometric approach to arrive at obstructions.

• Examines the limiting process of y → z

• In the neighbourhood of z a local model with an explicit G-action.

• As a consequence a Lie theoretic version of Luna’s slice theorem, which

works even when stabilizer H of z is not reductive.

• Analyses how the Lie algebra K of the stabilizer K of y and the Lie

algebra H of H interact.
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Our results: Joint with Adsul, Sohoni

• A conceptual proof of why no occurrence obstruction is not true.

What is needed to refine this?

• A better understanding of the limiting process K → H.

• When z is in the G -closure of y , a more nuanced understanding of

0→ Iz
Iy
→ C[O(y)]→ C[O(z)]→ 0

• How to analyze the kernel Iz
Iy

?

• Intermediate G -stable varieties could help to do better book keeping.

• Are there natural G -stable intermediate varieties?

• Two such constructions when z is the limit of y under a 1-PS λ.

W (λ), which gives a thickening of O(z) in the direction λ and allows a

filtration of the kernel of Ay/Az .

Zd(λ) which contains all limits z ′ which can be obtained a from a point in

the orbit of y as a leading term of degree d .
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No occurrence - a simpler proof



Conceptual Proof

• There are forms in the orbit closure of the determinant which are stable

under a large subgroup of GL(W ) and have trivial stabilizers.

Definition

A 1-PS of GL(W ) is a homomorphism of groups C∗ → GL(W ).

Action of a 1-PS on forms

λ : t →

(
t 0

0 t

)
µ : t →

(
t 0

0 t−1

)
,

λ(t) · (x2 + y 2) = t2x2 + t2y 2,

µ(t) · (x2 + y 2) = t2x2 + t−2y 2

• λ(t) drives (x2 + y 2) to zero in Sym2(W ∗).

• In PSym2(W ∗), λ(t) fixes x2 + y 2.

• In PSym2(W ∗), via µ(t) both x2 and y 2 are picked up in the orbit

closure of x2 + y 2. These forms are leading terms of a 1-PS acting on

x2 + y 2
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Proof sketch

• Hilbert-Mumford-Kempf criterion f is unstable if is a 1-PS

λ : C∗ → SL(W ) driving f to zero - there exists λ, 1-PS with leading term

f̂ of weight > 0. Semistable otherwise. Stable if in addition the orbit is

closed - there are both positive and negative weights under every 1-PS.

Lemma

Let B(Y ) ∈ Symd(CY ) and B ′ ∈ Syme(CY ) be two forms which are both

stable, i.e., their SL(Y )-orbits are closed. Then the SL(Y )-orbit of the product

B · B ′ ∈ Symd+e(CY ) is also closed.

Proof:

• Otherwise, by the Hilbert-Mumford-Kempf theory, there exists

λ(t) ∈ SL(Y ), with wt( ˆBB ′) ≥ 0.

• But B and B ′ are stable. So wt(B̂),wt(B̂ ′) < 0. Since ˆBB ′ = B̂B̂ ′ we

must have wt( ˆBB ′) = wt(B̂) + wt(B̂ ′) < 0.
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Proof sketch – continued

• n = 2m, X = {Xij |1 ≤ i , j ≤ n}, Y = {Xij |1 ≤ i , j ≤ m},X=(xij)

• B = det(Y ). Let A ∈ GL(CY ) and let B ′ = det(AY ).

• BB ′ is stable within Syma(CY ) ⊂ V = Syma(CX ).

• Let X ′ be [
Y 0

0 AY

]
• det(X ′) = BB ′.

• There exists g ∈ GL(CX ) and a 1-PS µ(t) ∈ GL(CX ) such that
̂gdet(X ) under µ is BB ′.

• GBB′ = Gdetm ∩ Gdet(AY ) = Gdetm ∩ (A−1GdetmA).

• There exists A for which the above is trivial, only identity element. -

example A = diag(t2
i

), 1 ≤ i ≤ a2 - generic matrix in GL(CX )

there is a SL(CY )-stable form with trivial stabilizer in the orbit closure of

Det2m.
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Theorem

Let Vλ(Cm2

) be an irreducible Weyl module with rows not exceeded m2, then

Vλ(C(2m)2)) is present in C[OV (det(X ))].

Sketch.

• The algebraic Peter Weyl Theorem, tells us that every Vλ(Cm2

) with at

most m2-parts occurs in the coordinate ring of the orbit of BB ′, since its

stabilizer is trivial.

• Every such module occurs in the GL(m2) orbit of BB ′ since BB ′ is

stable for SL(CY ), [MS 01][BMLW, 12].

• Every such module now occurs in the GL((2m)2)-orbit closure of BB ′,

(Lifting Lemma)

• So each such module occurs in GL((2m)2)-orbit closure of Det(X )
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Stabilizer limits



Assumptions

• V is a GL(X )-representation with tId · v = tcv .

• y is a stable form.

• λ(t)y = tdyd + teye + higher terms. z := ŷ = yd is the leading term

picked up in the projective orbit closure by a 1-PS.

• ye is not in the orbit of z .

• K is the stabilizer of y and H that of z .

• Note that if a form z is an affine projection of y := Detn, then there is a

1-PS acting λ such that ŷ = z . Studying limits picked up by 1-PS is

relevant and useful.
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Lie algebras - a quick recap

• G := GL(CX ) is a Lie group, it has the structure of a complex manifold.

The tangent space at Id is G:= End(CX ). It is a Lie algebra under the

bracket, [A,B] = AB − BA.

• When G acts on V elements of G act as differential operators.

• The exponential map is a diffeomorphism from G → G , A 7→ etA in a

neighbourhood of Id .

• The stabilizers K , H are Zariski-closed subgroups of GL(CX ) and they

are submanifolds of GL(CX ). Their Lie algebras, K,H are complex

subspaces of End(CX ), and coincide with the tangent spaces at Id to K ,

H respectively.

• If H is the stabilizer of a form f , differential operators in H send f to 0.

• G acts on G, G → GL(G), g 7→ [g→ ggg−1].

Restricting the above action to λ(t) ⊆ G ,

λ(t)g =
∑
a

taga

• Can talk of leading terms of every element in K.
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Example

• X = {x , y , z}, f = (x2 + y 2 + z2)2 ∈ Sym4(X ).

• The stabilizer algebra K is given below.

•

K =

 0 a b

−a 0 c

−b −c 0


•

ay
∂

∂x
+ bz

∂

∂x
− ax

∂

∂y
+ cz

∂

∂y
− bx

∂

∂z
− cy

∂

∂z

• λ(t) ⊆ GL(X ) given by λ(x) = x , λ(y) = y and λ(z) = tz , as shown

below.

λ(t) =

 1 0 0

0 1 0

0 0 t


• g = f̂ = LT ((x2 + y 2 + t2z2)2) = (x2 + y 2)2. The stabilizer H is as

shown below:

H =

 0 a c1

−a 0 c2

0 0 c3
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• K̂ = LT (λ,K) is given by the leading terms of

λ(t)Kλ(t)−1 =

 0 a t−1b

−a 0 t−1c

−tb −tc 0


• This is the Lie algebra of matrices with entries 0 a b

−a 0 c

0 0 0

 ⊆ H
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Linking K,H,Hye

Let TzO(z) = G · z , the tangent space to the orbit O(z) = G · z at the

point z . Then V /(TzO(z)) is an H-module. We call this the ?-action.

Let Hye be the stabilizer in H of ye ∈ V /(TzO(z)).

Proposition

Let z = ŷ and H = Lie(H) and K = Lie(K), where H,K are as above. Then

i K̂ ⊆ H, thereby connecting K,H.

ii Let y = yd + ye +
∑

i>e yi be the decomposition of y by degrees, with

z = yd and ye as the tangent of approach. Let k ∈ K be given by

ka + ka+1 . . .. Then ka, . . . , ka+e−d−1 ∈ H and ka ∈ Hye . So, K̂ ⊆ H.

Moreover, ka · ye = 0, so K̂ ⊆ Hye ⊆ H.
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The 3 x 3 Determinant case

• The two boundary components resolved by Hüttenhain in his thesis.

•

Q1(X ) = det


 x1 x2 x3

x4 x5 x6

x7 x8 −x5 − x1




•
det3(X ) = Q1(X ) + (x1 + x5 + x9)(x1x5 − x2x4)

• Set Y = {x1, . . . , x8} and Z = {x1 + x5 + x9}.
• λ1(t) ∈ GL(X ) as λ1(t)xi = xi for i = 1, . . . , 8 and λ1(t)(z) = tz , where

z = (x1 + x5 + x9).

•
λ1(t) · det3(X ) = Q1 + t · Q ′1

• d = 0, e = 1, the limit z1 = Q1, the tangent of approach ye := Q ′1.

• H1 = `1 ⊕ K̂1, where t`
1

= λ1(t) and K̂1 is the leading term algebra.

• K̂1 = H1
ye , the stabilizer of the tangent of approach, and [`1, K̂1] = K̂1.
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The 3 x 3 Determinant case...

•
Q2(X ) = x4x

2
1 + x5x

2
2 + x6x

2
3 + x7x1x2 + x8x2x3 + x9x1x3

•

Lemma (Hüettenhain)

Let Y ,Z be the generic matrices below and let X = Y ⊕ Z .

Y =

 0 x1 −x2
−x1 0 x3

x2 −x3 0

 Z =

 2x6 x8 x9

x8 2x5 x7

x9 x7 2x4


Let λ2(t) be such that λ2(t) · Y = Y and λ2(t) · Z = tZ . Let us define

det3(X ) as the determinant of the matrix Y + Z . Then:

det3(λ2(t) · X )) = det(Y + tZ) = tQ2 + t3Q3

where:

Q2(X ) = x4x
2
1 + x5x

2
2 + x6x

2
3 + x7x1x2 + x8x2x3 + x9x1x3

Q ′2(X ) = 8x4x5x6 − 2x6x
2
7 − 2x4x

2
8 − 2x5x

2
9 + 2x7x8x9
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The 3 x 3 Determinant case...
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The 3 x 3 Determinant case...

• z2 = Q2 is the limit, d = 1 and e = 3. ye := Q ′2 is the tangent of

approach

• H2 = `2 ⊕ K̂2, where t`
2

= λ2(t) and K̂2 is the leading term algebra of

K under λ2(t).

• K̂2 = H3
ye , the stabilizer of the tangent of approach, and [`2, K̂2] = K̂2.
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The 3 x 3 Determinant case...

• z2 = Q2 is the limit, d = 1 and e = 3. ye := Q ′2 is the tangent of

approach

• H2 = `2 ⊕ K̂2, where t`
2

= λ2(t) and K̂2 is the leading term algebra of

K under λ2(t).

• K̂2 = H3
ye , the stabilizer of the tangent of approach, and [`2, K̂2] = K̂2.

• Recipe to get hold of λ1, λ2?

• K̂1 is obtained via the injection SL3 → SL3 × SL3, A→ A× A−1.

• The reductive part of K̂1 is the sl3-module C8 ⊕ C1, corresponding the

break-up of X = X ′ ⊕ cI , the trace zero matrices X ′ and the identity

matrix.

• λ1(t) commutes with the reductive part!

• K̂2 is obtained via the injection SL3 → SL3 × SL3, A→ A× AT .

• The reductive part of K̂2 is the diagonal embedding of sl3 via

(Sym2(C3))∗ ⊕ Sym1(C3) corresponding to the break-up of X as

symmetric and antisymmetric matrices.

• λ2(t) commutes with the reductive part!

20



Intermediate G -stable varieties



Sandwich varieties

• Iz ideal of z in C[V ], Iy ideal of y in C[V ]. Both are G -stable and

Iy ⊆ Iz .

• Use the direction of approach, ye to z , to construct (suitable)-derivations

- directional derivatives in the direction gye at gz for every g ∈ G .

• The first thickening is:

J1(λ) = {f ∈ Iz |D1
gz,gye (f ) = 0 for all g ∈ G}

• The higher thickenings are

Jk(λ) = {f ∈ I kz |D1
gz,gye (f ) = 0 for all g ∈ G}

• This construction depends only on z and the representative of ye in

Tz(V )/Tz(Oz).

• Set Ri = I iz/I
i+1
z , Rz = ⊕Ri . Can be used to get a filtration of J = ⊕iJ

i ,

J.

• Get a G -map from Rz/J → C[G ]Hye which allows for reasoning about

Iz/Iy and a filtration of it.
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Sandwich varieties

• λ(t) · y = tdz + teye + . . .+ tDyD

• Let y ′ = gy and λ(t) · y ′ = tay ′a + . . .+ tby ′b.

• Set Yd = {y ′ = gy |y ′a = 0 for all a < d} — those elements in O(y) for

which deg(ŷ ′) ≥ d .

• Let Vd be the degree d subspace of V under λ, and consider the

projection πd : V → Vd .

• Let Zd(λ) = πd(Yd).

• Every z ′ ∈ Zd is in O(y ′), so GZd ⊂ O(y), thus constraining possible y .

There is a natural lower bound on the codimension of O(z) in Zd - based

on H/Hye , Hye/K̂.
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Conclusions:

• New proof of why the no occurrence obstructions needs refinement.

• 1-PS subgroups commuting with of large subgroups of K give give us

degree 0 components of K̂ (reductive subalgebras) which go into H.

• The thickening varieties allow us to reason about the filtration Iy/Iz .

Modules in the coordinate ring of y which are not related to H are in the

kernel J/Iy . Modules are related to H, Hye .

• Construction of the variety Z(d) which constrains possible y .
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