Towards refining the No Occurence Obstructions in GCT

K V Subrahmanyam

Chennai Mathematical Institute

6th March 27, 2023

7th Workshop on Algebraic Complexity Theory, (WACT) 2023

University of Warwick

1. The GCT approach

2. No occurrence - a simpler proof

3. Stabilizer limits

Det₃

4. Intermediate G-stable varieties

The GCT approach

Orbit closure membership

- Let $W = \mathbb{C}^n$, and let $\mathbb{P}(S^d(W^*))$ denote the projective space of homogeneous polynomials of degree d over W.
- $GL(W) \circlearrowright \mathbb{P}(S^d(W^*))$, a natural action

$$(f,\mathcal{M}) \to f \circ \mathcal{M}^{\mathsf{T}}$$

• $\Omega_f := f \circ GL(W) \subseteq \mathbb{P}(S^d(W^*))$, the orbit of f, $\overline{\Omega_f}$ its Zariski closure

Fundamental problem of algebraic complexity

Given $f, g \in \mathbb{P}(S^d(W^*))$ is $g \in \overline{\Omega_f}$?

This problem is related to the P vs NP problem in complexity theory.

Actions on polynomials

G = GL(2), V, polynomials of degree 2 in $\{x_1, x_2\}$.

$$\Box g = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}, f_1 = x_1^2.$$

• $g \cdot f_1 = (x_1 + 2x_2)^2 = x_1^2 + 4x_2^2 + 4x_1x_2.$

$$\Box g = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}, f_2 = x_1x_2.$$

• $g \cdot f_2 = (x_1 + 2x_2)(3x_1 + x_2) = 3x_1^2 + 7x_1x_2 + 2x_2^2$

Determinant versus Permanent

•
$$W = \mathbb{C}^{n^2}$$
, $f = Determinant(x_{11}, \ldots, x_{nn}) \in S^n(x_{11}, \ldots, x_{nn})$

The stabilizer of Determinant is S(GL(n) × GL(n)) ⋊ Z₂ ⊆ SL(n²),
 (A, B) sending X to AXB, Z₂ sending X to X^T.

• The stabilizer of Determinant, G_{Det}, is reductive.

•
$$W = \mathbb{C}^{m^2}$$
, $f = Permanent(x_{11}, \ldots, x_{mm}) \in S^m(x_{11}, \ldots, x_{mm})$

- The stabilizer of Permanent: $(M_n, M_n) \rtimes \mathbb{Z}_2 \subseteq SL(m^2)$, M_n being monomial matrices.
- The stabilizer of Permanent, *G_{Perm}*, is reductive.
- The holy grail of algebraic complexity Let m < n. Is $x_{nn}^{n-m} Perm_m \in \overline{Det_n}$?

• Conjecture: [Valiant 79, Mumuley-Sohoni 02] Not true when *n* is subexponential in *m*

• Is $x_{nn}^{n-m} Perm_m \in \overline{O(Det_n)}$?

• The GCT approach - rests on the fact that the forms (*Det_n*, *Perm_m*) have distinctive reductive stabilizers, which characterize the form - any polynomial with the same stabilizer as *Det_n* is a multiple of *Det_n*.

• G_{Det} reductive implies the orbit $GL(W)/G_{Det}$ is an affine variety, [Matsushima].

• The coordinate ring of the orbit of Determinant is $\mathbb{C}[W]^{G_{Det}}$

• The boundary of the closure of an affine variety is empty or has pure codimension one.

• The symmetries of *Det_n*, *Perm_m*, should help us solve Valiant's conjecture.

$$\mathbb{C}[\overline{O(Det_n)}] \to \mathbb{C}[\overline{O(x_{nn}^{n-m}perm_m)}] \to 0$$

Information about $x_{nn}^{n-m}Perm_m$ not being in the orbit closure of Det_n should be present in their coordinate rings

- The $SL(n^2)$ orbit of Det_n is closed, we say it is stable.
- The $SL(m^2)$ orbit of $Perm_m$ is closed. $Perm_m$ is stable. $x_{nn}^{n-m}Perm_m$ is NOT stable
- Each homogeneous piece of their coordinate rings is a representation of GL(W).
- $GL(W) \rightarrow GL(\mathbb{C}[\overline{O(Det_n)}]_d)$, a group homomorphism.
- *GL(W)*-representations are characterized by combinatorial data-like how an integer splits into its prime factors. The prime representations are called irreducible representations. The number of times one such irreducible representation occurs is its multiplicity.
- Multiplicities of representations as obstructions

If the multiplicity of an irreducible GL(W) module V_{λ} occurring in $\mathbb{C}[\overline{O(x_{nn}^{n-m}Perm_m)}]_d$ is more than the multiplicity of V_{λ} in $\mathbb{C}[\overline{O(Det_n)}]_d$, $x_{nn}^{n-m}Perm_m$ is not in the orbit closure of det_n [Mulmuley-Sohoni]

• No Occurrence Obstruction Conjecture: When *n* is subexponential in *m*, for infinitely many *d*, there are irreducible representations which occur in $\mathbb{C}[\overline{O(x_{nn}^{n-m}Perm_m)}]_d$ but do not occur in $\mathbb{C}[\overline{O(Det_n)}]_d$.

No Occurrence obstruction

- [Ikenmeyer, Panova,17]
- [Bürgisser, Ikenmeyer, Panova,18]
- When $n > m^{26}$, every irreducible representation occurring in $\mathbb{C}[\overline{O(x_{nn}^{n-m}perm_m)}]_d$ occurs in $\mathbb{C}[\overline{O(det_n)}]_d$.

No occurrence as stated is not true.

[Adsul, Sohoni, S,22] A geometric approach to arrive at obstructions.

- \bullet Examines the limiting process of $y \to z$
- In the neighbourhood of z a *local model* with an explicit \mathcal{G} -action.
- As a consequence a Lie theoretic version of Luna's slice theorem, which works even when stabilizer H of z is not reductive.
- Analyses how the Lie algebra \mathcal{K} of the stabilizer K of y and the Lie algebra \mathcal{H} of H interact.

Our results: Joint with Adsul, Sohoni

- A conceptual proof of why no occurrence obstruction is not true. What is needed to refine this?
- A better understanding of the limiting process $\mathcal{K} \to \mathcal{H}.$
- When z is in the G-closure of y, a more nuanced understanding of

$$0 \to \frac{I_z}{I_y} \to \mathbb{C}[\overline{O(y)}] \to \mathbb{C}[\overline{O(z)}] \to 0$$

- How to analyze the kernel $\frac{I_z}{I_v}$?
- Intermediate G-stable varieties could help to do better book keeping.
- Are there natural G-stable intermediate varieties?

• Two such constructions when z is the limit of y under a 1-PS λ . $W(\lambda)$, which gives a thickening of O(z) in the direction λ and allows a filtration of the kernel of A_y/A_z .

 $Z_d(\lambda)$ which contains all limits z' which can be obtained a from a point in the orbit of y as a leading term of degree d.

No occurrence - a simpler proof

• There are forms in the orbit closure of the determinant which are stable under a large subgroup of GL(W) and have trivial stabilizers.

Definition

A 1-PS of GL(W) is a homomorphism of groups $\mathbb{C}^* \to GL(W)$.

Action of a 1-PS on forms

$$\begin{split} \lambda:t &\to \begin{pmatrix} t & 0 \\ 0 & t \end{pmatrix} \qquad \mu:t \to \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}, \\ \lambda(t)\cdot(x^2+y^2) &= t^2x^2+t^2y^2, \\ \mu(t)\cdot(x^2+y^2) &= t^2x^2+t^{-2}y^2 \end{split}$$

- $\lambda(t)$ drives $(x^2 + y^2)$ to zero in $Sym^2(W^*)$.
- In $\mathbb{P}Sym^2(W^*)$, $\lambda(t)$ fixes $x^2 + y^2$.
- In $\mathbb{P}Sym^2(W^*)$, via $\mu(t)$ both x^2 and y^2 are picked up in the orbit closure of $x^2 + y^2$. These forms are leading terms of a 1-PS acting on $x^2 + y^2$

Proof sketch

• Hilbert-Mumford-Kempf criterion f is unstable if is a 1-PS $\lambda : \mathbb{C}^* \to SL(W)$ driving f to zero - there exists λ , 1-PS with leading term \hat{f} of weight > 0. Semistable otherwise. Stable if in addition the orbit is closed - there are both positive and negative weights under every 1-PS.

Lemma

Let $B(Y) \in Sym^{d}(\mathbb{C}Y)$ and $B' \in Sym^{e}(\mathbb{C}Y)$ be two forms which are both stable, i.e., their SL(Y)-orbits are closed. Then the SL(Y)-orbit of the product $B \cdot B' \in Sym^{d+e}(\mathbb{C}Y)$ is also closed.

Proof:

- Otherwise, by the Hilbert-Mumford-Kempf theory, there exists $\lambda(t) \in SL(Y)$, with $wt(\hat{BB'}) \ge 0$.
- But *B* and *B'* are stable. So $wt(\hat{B}), wt(\hat{B}') < 0$. Since $\hat{BB'} = \hat{B}\hat{B'}$ we must have $wt(\hat{BB'}) = wt(\hat{B}) + wt(\hat{B'}) < 0$. \Box

Proof sketch - continued

- n = 2m, $X = \{X_{ij} | 1 \le i, j \le n\}$, $Y = \{X_{ij} | 1 \le i, j \le m\}$, $X = (x_{ij})$
- B = det(Y). Let $A \in GL(\mathbb{C}Y)$ and let B' = det(AY).
- BB' is stable within $Sym^{a}(\mathbb{C}Y) \subset V = Sym^{a}(\mathbb{C}X)$.
- Let X' be

$$\left[\begin{array}{cc} Y & 0 \\ 0 & AY \end{array}\right]$$

- det(X') = BB'.
- There exists $g \in GL(\mathbb{C}X)$ and a 1-PS $\mu(t) \in GL(\mathbb{C}X)$ such that $\widehat{gdet(X)}$ under μ is BB'.
- $G_{BB'} = G_{det_m} \cap G_{det(AY)} = G_{det_m} \cap (A^{-1}G_{det_m}A).$
- There exists A for which the above is trivial, only identity element. example $A = diag(t^{2^i}), 1 \le i \le a^2$ generic matrix in $GL(\mathbb{C}X)$

there is a $SL(\mathbb{C}Y)$ -stable form with trivial stabilizer in the orbit closure of Det_{2m} .

Theorem

Let $V_{\lambda}(\mathbb{C}^{m^2})$ be an irreducible Weyl module with rows not exceeded m^2 , then $V_{\lambda}(\mathbb{C}^{(2m)^2})$ is present in $\mathbb{C}[\overline{O_V(det(X))}]$.

Sketch.

- The algebraic Peter Weyl Theorem, tells us that every $V_{\lambda}(\mathbb{C}^{m^2})$ with at most m^2 -parts occurs in the coordinate ring of the orbit of BB', since its stabilizer is trivial.
- Every such module occurs in the $GL(m^2)$ orbit of BB' since BB' is stable for $SL(\mathbb{C}Y)$, [MS 01][BMLW, 12].
- Every such module now occurs in the $GL((2m)^2)$ -orbit closure of BB', (Lifting Lemma)
- So each such module occurs in $GL((2m)^2)$ -orbit closure of Det(X)

Stabilizer limits

Assumptions

- V is a GL(X)-representation with $tId \cdot v = t^c v$.
- y is a stable form.

• $\lambda(t)y = t^d y_d + t^e y_e + higher terms$. $z := \hat{y} = y_d$ is the leading term picked up in the projective orbit closure by a 1-PS.

- y_e is not in the orbit of z.
- K is the stabilizer of y and H that of z.
- Note that if a form z is an affine projection of $y := Det_n$, then there is a 1-PS acting λ such that $\hat{y} = z$. Studying limits picked up by 1-PS is relevant and useful.

• $G := GL(\mathbb{C}X)$ is a Lie group, it has the structure of a complex manifold. The tangent space at *Id* is $\mathcal{G} := End(\mathbb{C}X)$. It is a Lie algebra under the bracket, [A, B] = AB - BA.

- When G acts on V elements of G act as differential operators.
- The exponential map is a diffeomorphism from $\mathcal{G} \to G$, $A \mapsto e^{tA}$ in a neighbourhood of *Id*.
- The stabilizers K, H are Zariski-closed subgroups of $GL(\mathbb{C}X)$ and they are submanifolds of $GL(\mathbb{C}X)$. Their Lie algebras, \mathcal{K}, \mathcal{H} are complex subspaces of $End(\mathbb{C}X)$, and coincide with the tangent spaces at Id to K, H respectively.
- If H is the stabilizer of a form f, differential operators in \mathcal{H} send f to 0.
- *G* acts on \mathcal{G} , $G \to GL(\mathcal{G})$, $g \mapsto [\mathfrak{g} \to g\mathfrak{g}g^{-1}]$. Restricting the above action to $\lambda(t) \subseteq G$,

$$\lambda(t)\mathfrak{g}=\sum_{a}t^{a}\mathfrak{g}_{a}$$

 \bullet Can talk of leading terms of every element in ${\cal K}.$

Example

.

- $X = \{x, y, z\}, f = (x^2 + y^2 + z^2)^2 \in Sym^4(X).$
- \bullet The stabilizer algebra ${\cal K}$ is given below.

$$\mathcal{K} = \left[\begin{array}{rrrr} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{array} \right]$$

$$ay\frac{\partial}{\partial x} + bz\frac{\partial}{\partial x} - ax\frac{\partial}{\partial y} + cz\frac{\partial}{\partial y} - bx\frac{\partial}{\partial z} - cy\frac{\partial}{\partial z}$$

• $\lambda(t) \subseteq GL(X)$ given by $\lambda(x) = x, \lambda(y) = y$ and $\lambda(z) = tz$, as shown below.

$$\lambda(t) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & t \end{bmatrix}$$

• $g = \hat{f} = LT((x^2 + y^2 + t^2 z^2)^2) = (x_2 + y^2)^2$. The stabilizer \mathcal{H} is as shown below:

$$\mathcal{H} = \begin{bmatrix} 0 & a & c_1 \\ -a & 0 & c_2 \\ 0 & 0 & c_3 \end{bmatrix}$$

• $\hat{\mathcal{K}} = \mathcal{LT}(\lambda,\mathcal{K})$ is given by the leading terms of

$$\lambda(t)\mathcal{K}\lambda(t)^{-1}=\left[egin{array}{ccc} 0 & a & t^{-1}b\ -a & 0 & t^{-1}c\ -tb & -tc & 0 \end{array}
ight]$$

• This is the Lie algebra of matrices with entries

$$\left[\begin{array}{rrrr} 0 & a & b \\ -a & 0 & c \\ 0 & 0 & 0 \end{array}\right] \subseteq \mathcal{H}$$

Let $T_z O(z) = \mathcal{G} \cdot z$, the tangent space to the orbit $O(z) = \mathcal{G} \cdot z$ at the point z. Then $V/(T_z O(z))$ is an \mathcal{H} -module. We call this the *-action. Let \mathcal{H}_{v_e} be the stabilizer in \mathcal{H} of $\overline{y_e} \in V/(T_z O(z))$.

Proposition

Let $z = \hat{y}$ and $\mathcal{H} = Lie(\mathcal{H})$ and $\mathcal{K} = Lie(\mathcal{K})$, where \mathcal{H}, \mathcal{K} are as above. Then i $\hat{\mathcal{K}} \subseteq \mathcal{H}$, thereby connecting \mathcal{K}, \mathcal{H} .

ii Let $y = y_d + y_e + \sum_{i>e} y_i$ be the decomposition of y by degrees, with $z = y_d$ and y_e as the tangent of approach. Let $\mathfrak{k} \in \mathcal{K}$ be given by $\mathfrak{k}_a + \mathfrak{k}_{a+1} \dots$. Then $\mathfrak{k}_a, \dots, \mathfrak{k}_{a+e-d-1} \in \mathcal{H}$ and $\mathfrak{k}_a \in \mathcal{H}_{y_e}$. So, $\hat{\mathcal{K}} \subseteq \mathcal{H}$. Moreover, $\mathfrak{k}_a \cdot \overline{y_e} = 0$, so $\hat{\mathcal{K}} \subseteq \mathcal{H}_{y_e} \subseteq \mathcal{H}$.

The 3 x 3 Determinant case

• The two boundary components resolved by Hüttenhain in his thesis.

$$Q_1(X) = det \left(\begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & -x_5 - x_1 \end{bmatrix} \right)$$

٠

$$det_3(X) = Q_1(X) + (x_1 + x_5 + x_9)(x_1x_5 - x_2x_4)$$

• Set
$$Y = \{x_1, \ldots, x_8\}$$
 and $Z = \{x_1 + x_5 + x_9\}$.

• $\lambda^1(t) \in GL(X)$ as $\lambda^1(t)x_i = x_i$ for i = 1, ..., 8 and $\lambda^1(t)(z) = tz$, where $z = (x_1 + x_5 + x_9)$.

۰

$$\lambda^1(t) \cdot det_3(X) = Q_1 + t \cdot Q_1'$$

- d = 0, e = 1, the limit $z^1 = Q_1$, the tangent of approach $y_e := Q'_1$.
- $\mathcal{H}_1 = \ell^1 \oplus \hat{\mathcal{K}}^1$, where $t^{\ell^1} = \lambda^1(t)$ and $\hat{\mathcal{K}}^1$ is the leading term algebra.
- $\hat{\mathcal{K}}^1 = \mathcal{H}^1_{y_e}$, the stabilizer of the tangent of approach, and $[\ell^1, \hat{\mathcal{K}}^1] = \hat{\mathcal{K}}^1$.

• $Q_2(X) = x_4 x_1^2 + x_5 x_2^2 + x_6 x_3^2 + x_7 x_1 x_2 + x_8 x_2 x_3 + x_9 x_1 x_3$ •

Lemma (Hüettenhain)

Let Y, Z be the generic matrices below and let $X = Y \oplus Z$.

$$Y = \begin{bmatrix} 0 & x_1 & -x_2 \\ -x_1 & 0 & x_3 \\ x_2 & -x_3 & 0 \end{bmatrix} \quad Z = \begin{bmatrix} 2x_6 & x_8 & x_9 \\ x_8 & 2x_5 & x_7 \\ x_9 & x_7 & 2x_4 \end{bmatrix}$$

Let $\lambda^2(t)$ be such that $\lambda^2(t) \cdot Y = Y$ and $\lambda_2(t) \cdot Z = tZ$. Let us define $det^3(X)$ as the determinant of the matrix Y + Z. Then:

$$det^{3}(\lambda^{2}(t) \cdot X)) = det(Y + tZ) = tQ_{2} + t^{3}Q_{3}$$

where:

$$\begin{array}{rcl} Q_2(X) &=& x_4 x_1^2 + x_5 x_2^2 + x_6 x_3^2 + x_7 x_1 x_2 + x_8 x_2 x_3 + x_9 x_1 x_3 \\ Q_2'(X) &=& 8 x_4 x_5 x_6 - 2 x_6 x_7^2 - 2 x_4 x_8^2 - 2 x_5 x_9^2 + 2 x_7 x_8 x_9 \end{array}$$

The 3 x 3 Determinant case...

The 3 x 3 Determinant case...

• $z^2 = Q_2$ is the limit, d = 1 and e = 3. $y_e := Q_2'$ is the tangent of approach

• $\mathcal{H}_2 = \ell^2 \oplus \hat{\mathcal{K}}^2$, where $t^{\ell^2} = \lambda^2(t)$ and $\hat{\mathcal{K}}^2$ is the leading term algebra of \mathcal{K} under $\lambda^2(t)$.

• $\hat{\mathcal{K}}^2 = \mathcal{H}^3_{y_e}$, the stabilizer of the tangent of approach, and $[\ell^2, \hat{\mathcal{K}}^2] = \hat{\mathcal{K}}^2$.

• $z^2 = Q_2$ is the limit, d = 1 and e = 3. $y_e := Q_2'$ is the tangent of approach

• $\mathcal{H}_2 = \ell^2 \oplus \hat{\mathcal{K}}^2$, where $t^{\ell^2} = \lambda^2(t)$ and $\hat{\mathcal{K}}^2$ is the leading term algebra of \mathcal{K} under $\lambda^2(t)$.

• $\hat{\mathcal{K}}^2 = \mathcal{H}^3_{y_e}$, the stabilizer of the tangent of approach, and $[\ell^2, \hat{\mathcal{K}}^2] = \hat{\mathcal{K}}^2$.

- Recipe to get hold of λ_1, λ_2 ?
- $\hat{\mathcal{K}}^1$ is obtained via the injection $SL_3 \rightarrow SL_3 \times SL_3$, $A \rightarrow A \times A^{-1}$.

• The reductive part of $\hat{\mathcal{K}}^1$ is the sI_3 -module $\mathbb{C}^8 \oplus \mathbb{C}^1$, corresponding the break-up of $X = X' \oplus cI$, the trace zero matrices X' and the identity matrix.

- $\lambda_1(t)$ commutes with the reductive part!
- $\hat{\mathcal{K}}^2$ is obtained via the injection $SL_3 \rightarrow SL_3 \times SL_3$, $A \rightarrow A \times A^T$.

• The reductive part of $\hat{\mathcal{K}}^2$ is the diagonal embedding of sl_3 via $(Sym^2(\mathbb{C}^3))^* \oplus Sym^1(\mathbb{C}^3)$ corresponding to the break-up of X as symmetric and antisymmetric matrices.

• $\lambda_2(t)$ commutes with the reductive part!

Intermediate G-stable varieties

- I_z ideal of z in $\mathbb{C}[V]$, I_y ideal of y in $\mathbb{C}[V]$. Both are G-stable and $I_y \subseteq I_z$.
- Use the direction of approach, y_e to z, to construct (suitable)-derivations
- directional derivatives in the direction gy_e at gz for every $g \in G$.
- The first thickening is:

$$J^1(\lambda) = \{f \in I_z | D^1_{gz,gy_e}(f) = 0 \text{ for all } g \in G\}$$

• The higher thickenings are

$$J^k(\lambda) = \{f \in I^k_z | D^1_{gz,gy_e}(f) = 0 \text{ for all } g \in G\}$$

- This construction depends only on z and the representative of y_e in $T_z(V)/T_z(O_z)$.
- Set $R_i = I_z^i/I_z^{i+1}$, $R_z = \oplus R_i$. Can be used to get a filtration of $J = \oplus_i J^i$, \overline{J} .
- Get a G-map from $R_z/\overline{J} \to \mathbb{C}[G]^{H_{y_e}}$ which allows for reasoning about I_z/I_y and a filtration of it.

Sandwich varieties

- $\lambda(t) \cdot y = t^d z + t^e y_e + \ldots + t^D y_D$
- Let y' = gy and $\lambda(t) \cdot y' = t^a y'_a + \ldots + t^b y'_b$.
- Set $Y_d = \{y' = gy | y'_a = 0 \text{ for all } a < d\}$ those elements in O(y) for which $deg(\hat{y'}) \ge d$.

• Let V_d be the degree d subspace of V under λ , and consider the projection $\pi_d : V \to V_d$.

• Let $Z_d(\lambda) = \pi_d(Y_d)$.

• Every $z' \in Z_d$ is in O(y'), so $\overline{GZ_d} \subset \overline{O(y)}$, thus constraining possible y. There is a natural lower bound on the codimension of O(z) in Z_d - based on $\mathcal{H}/\mathcal{H}_{y_e}, \mathcal{H}_{y_e}/\hat{\mathcal{K}}$.

Conclusions:

- New proof of why the no occurrence obstructions needs refinement.
- 1-PS subgroups commuting with of large subgroups of K give give us degree 0 components of $\hat{\mathcal{K}}$ (reductive subalgebras) which go into \mathcal{H} .
- The thickening varieties allow us to reason about the filtration I_y/I_z . Modules in the coordinate ring of y which are not related to H are in the kernel \overline{J}/I_y . Modules are related to H, H_{y_e} .
- Construction of the variety Z(d) which constrains possible y.