Towards refining the No Occurence Obstructions in GCT

K V Subrahmanyam
Chennai Mathematical Institute

6th March 27, 2023
7th Workshop on Algebraic Complexity Theory, (WACT) 2023
University of Warwick

Table of Contents

1. The GCT approach
2. No occurrence - a simpler proof
3. Stabilizer limits
Det_{3}
4. Intermediate G-stable varieties

The GCT approach

Orbit closure membership

- Let $W=\mathbb{C}^{n}$, and let $\mathbb{P}\left(S^{d}\left(W^{*}\right)\right)$ denote the projective space of homogeneous polynomials of degree d over W.
- $G L(W) \circlearrowright \mathbb{P}\left(S^{d}\left(W^{*}\right)\right)$, a natural action

$$
(f, \mathcal{M}) \rightarrow f \circ \mathcal{M}^{\top}
$$

- $\Omega_{f}:=f \circ G L(W) \subseteq \mathbb{P}\left(S^{d}\left(W^{*}\right)\right)$, the orbit of $f, \overline{\Omega_{f}}$ its Zariski closure

Fundamental problem of algebraic complexity

Given $f, g \in \mathbb{P}\left(S^{d}\left(W^{*}\right)\right)$ is $g \in \overline{\Omega_{f}}$?
This problem is related to the P vs NP problem in complexity theory.

Actions on polynomials

$$
\begin{aligned}
G= & G L(2), V, \text { polynomials of degree } 2 \text { in }\left\{x_{1}, x_{2}\right\} . \\
\square g & =\left(\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right), f_{1}=x_{1}^{2} . \\
& \bullet g \cdot f_{1}=\left(x_{1}+2 x_{2}\right)^{2}=x_{1}^{2}+4 x_{2}^{2}+4 x_{1} x_{2} . \\
\square g & =\left(\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right), f_{2}=x_{1} x_{2} . \\
& \bullet g \cdot f_{2}=\left(x_{1}+2 x_{2}\right)\left(3 x_{1}+x_{2}\right)=3 x_{1}^{2}+7 x_{1} x_{2}+2 x_{2}^{2}
\end{aligned}
$$

Determinant versus Permanent

- $W=\mathbb{C}^{n^{2}}, f=\operatorname{Determinant}\left(x_{11}, \ldots, x_{n n}\right) \in S^{n}\left(x_{11}, \ldots, x_{n n}\right)$
- The stabilizer of Determinant is $S(G L(n) \times G L(n)) \rtimes \mathbb{Z}_{2} \subseteq S L\left(n^{2}\right)$, (A, B) sending X to $A X B, \mathbb{Z}_{2}$ sending X to X^{\top}.
- The stabilizer of Determinant, $G_{\text {Det }}$, is reductive.
- $W=\mathbb{C}^{m^{2}}, f=\operatorname{Permanent}\left(x_{11}, \ldots, x_{m m}\right) \in S^{m}\left(x_{11}, \ldots, x_{m m}\right)$
- The stabilizer of Permanent: $\left(M_{n}, M_{n}\right) \rtimes \mathbb{Z}_{2} \subseteq S L\left(m^{2}\right), M_{n}$ being monomial matrices.
- The stabilizer of Permanent, $G_{\text {Perm }}$, is reductive.
- The holy grail of algebraic complexity Let $m<n$. Is $x_{n n}^{n-m}$ Perm $_{m} \in \overline{D^{2} t_{n}}$?
- Conjecture: [Valiant 79, Mumuley-Sohoni 02] Not true when n is subexponential in m

Reductive stabilizers

- Is $x_{n n}^{n-m}$ Perm $_{m} \in \overline{O\left(D e t_{n}\right)}$?
- The GCT approach - rests on the fact that the forms $\left(\operatorname{Det}_{n}, P_{e r m}^{m}\right)$ have distinctive reductive stabilizers, which characterize the form - any polynomial with the same stabilizer as $D e t_{n}$ is a multiple of $D e t_{n}$.
- $G_{\text {Det }}$ reductive implies the orbit $G L(W) / G_{\text {Det }}$ is an affine variety, [Matsushima].
- The coordinate ring of the orbit of Determinant is $\mathbb{C}[W]^{G_{\text {Det }}}$
- The boundary of the closure of an affine variety is empty or has pure codimension one.
- The symmetries of $\operatorname{Det}_{n}, \operatorname{Perm}_{m}$, should help us solve Valiant's conjecture.

$$
\mathbb{C}\left[\overline{O\left(\text { Det }_{n}\right)}\right] \rightarrow \mathbb{C}\left[\overline{O\left(x_{n n}^{n-m} \text { perm }_{m}\right)}\right] \rightarrow 0
$$

Information about $x_{n n}^{n-m}$ Perm $_{m}$ not being in the orbit closure of Det_{n} should be present in their coordinate rings

Representation theoretic obstructions

- The $S L\left(n^{2}\right)$ orbit of $D e t_{n}$ is closed, we say it is stable.
- The $S L\left(m^{2}\right)$ orbit of Perm m_{m} is closed. Perm m_{m} is stable. $x_{n n}^{n-m}$ Perm $_{m}$ is NOT stable
- Each homogeneous piece of their coordinate rings is a representation of $G L(W)$.
- $G L(W) \rightarrow G L\left(\mathbb{C}\left[\overline{O\left(D e t_{n}\right)}\right]_{d}\right)$, a group homomorphism.
- $G L(W)$-representations are characterized by combinatorial data-like how an integer splits into its prime factors. The prime representations are called irreducible representations. The number of times one such irreducible representation occurs is its multiplicity.
- Multiplicities of representations as obstructions

If the multiplicity of an irreducible $G L(W)$ module V_{λ} occurring in $\mathbb{C}\left[\overline{O\left(x_{n n}^{n-m} \text { Perm }_{m}\right)}\right]_{d}$ is more than the multiplicity of V_{λ} in $\mathbb{C}\left[\overline{O\left(D e t_{n}\right)}\right]_{d}$, $x_{n n}^{n-m}$ Perm $_{m}$ is not in the orbit closure of det_{n} [Mulmuley-Sohoni]

- No Occurrence Obstruction Conjecture: When n is subexponential in m, for infinitely many d, there are irreducible representations which occur in $\mathbb{C}\left[\overline{O\left(x_{n n}^{n-m} \text { Perm }_{m}\right)}\right]_{d}$ but do not occur in $\mathbb{C}\left[\overline{O\left(\text { Det }_{n}\right)}\right]_{d}$.

No Occurrence obstruction

- [Ikenmeyer, Panova,17]
- [Bürgisser, Ikenmeyer, Panova,18]
- When $n>m^{26}$, every irreducible representation occurring in $\mathbb{C}\left[\overline{O\left(x_{n n}^{n-m} \text { perm }_{m}\right)}\right]_{d}$ occurs in $\mathbb{C}\left[\overline{O\left(\operatorname{det}_{n}\right)}\right]_{d}$.
No occurrence as stated is not true.
[Adsul, Sohoni, S,22] A geometric approach to arrive at obstructions.
- Examines the limiting process of $y \rightarrow z$
- In the neighbourhood of z a local model with an explicit \mathcal{G}-action.
- As a consequence a Lie theoretic version of Luna's slice theorem, which works even when stabilizer H of z is not reductive.
- Analyses how the Lie algebra \mathcal{K} of the stabilizer K of y and the Lie algebra \mathcal{H} of H interact.

Our results: Joint with Adsul, Sohoni

- A conceptual proof of why no occurrence obstruction is not true.

What is needed to refine this?

- A better understanding of the limiting process $\mathcal{K} \rightarrow \mathcal{H}$.
- When z is in the G-closure of y, a more nuanced understanding of

$$
0 \rightarrow \frac{I_{z}}{I_{y}} \rightarrow \mathbb{C}[\overline{O(y)}] \rightarrow \mathbb{C}[\overline{O(z)}] \rightarrow 0
$$

- How to analyze the kernel $\frac{I_{z}}{I_{y}}$?
- Intermediate G-stable varieties could help to do better book keeping.
- Are there natural G-stable intermediate varieties?
- Two such constructions when z is the limit of y under a 1-PS λ. $W(\lambda)$, which gives a thickening of $O(z)$ in the direction λ and allows a filtration of the kernel of A_{y} / A_{z}.
$Z_{d}(\lambda)$ which contains all limits z^{\prime} which can be obtained a from a point in the orbit of y as a leading term of degree d.

No occurrence - a simpler proof

Conceptual Proof

- There are forms in the orbit closure of the determinant which are stable under a large subgroup of $G L(W)$ and have trivial stabilizers.

Definition

A 1-PS of $G L(W)$ is a homomorphism of groups $\mathbb{C}^{*} \rightarrow G L(W)$.

Action of a 1-PS on forms

$$
\begin{gathered}
\lambda: t \rightarrow\left(\begin{array}{cc}
t & 0 \\
0 & t
\end{array}\right) \quad \mu: t \rightarrow\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right) \\
\lambda(t) \cdot\left(x^{2}+y^{2}\right)=t^{2} x^{2}+t^{2} y^{2} \\
\mu(t) \cdot\left(x^{2}+y^{2}\right)=t^{2} x^{2}+t^{-2} y^{2}
\end{gathered}
$$

- $\lambda(t)$ drives $\left(x^{2}+y^{2}\right)$ to zero in $\operatorname{Sym}^{2}\left(W^{*}\right)$.
- In $\mathbb{P} \operatorname{Sym}^{2}\left(W^{*}\right), \lambda(t)$ fixes $x^{2}+y^{2}$.
- In $\mathbb{P} \operatorname{Sym}^{2}\left(W^{*}\right)$, via $\mu(t)$ both x^{2} and y^{2} are picked up in the orbit closure of $x^{2}+y^{2}$. These forms are leading terms of a 1-PS acting on $x^{2}+y^{2}$

Proof sketch

- Hilbert-Mumford-Kempf criterion f is unstable if is a 1-PS
$\lambda: \mathbb{C}^{*} \rightarrow S L(W)$ driving f to zero - there exists $\lambda, 1-\mathrm{PS}$ with leading term \hat{f} of weight >0. Semistable otherwise. Stable if in addition the orbit is closed - there are both positive and negative weights under every 1-PS.

Lemma

Let $B(Y) \in \operatorname{Sym}^{d}(\mathbb{C} Y)$ and $B^{\prime} \in \operatorname{Sym}^{e}(\mathbb{C} Y)$ be two forms which are both stable, i.e., their $S L(Y)$-orbits are closed. Then the $S L(Y)$-orbit of the product $B \cdot B^{\prime} \in \operatorname{Sym}^{d+e}(\mathbb{C} Y)$ is also closed.

Proof:

- Otherwise, by the Hilbert-Mumford-Kempf theory, there exists $\lambda(t) \in S L(Y)$, with $w t\left(\hat{B B}^{\prime}\right) \geq 0$.
- But B and B^{\prime} are stable. So $w t(\hat{B}), w t\left(\hat{B^{\prime}}\right)<0$. Since $\hat{B B^{\prime}}=\hat{B} \hat{B}^{\prime}$ we must have $w t\left(\hat{B B}^{\prime}\right)=w t(\hat{B})+w t\left(\hat{B}^{\prime}\right)<0$.

Proof sketch - continued

- $n=2 m, X=\left\{X_{i j} \mid 1 \leq i, j \leq n\right\}, Y=\left\{X_{i j} \mid 1 \leq i, j \leq m\right\}, X=\left(x_{i j}\right)$
- $B=\operatorname{det}(Y)$. Let $A \in G L(\mathbb{C} Y)$ and let $B^{\prime}=\operatorname{det}(A Y)$.
- $B B^{\prime}$ is stable within $\operatorname{Sym}^{a}(\mathbb{C} Y) \subset V=\operatorname{Sym}^{a}(\mathbb{C} X)$.
- Let X^{\prime} be

$$
\left[\begin{array}{cc}
Y & 0 \\
0 & A Y
\end{array}\right]
$$

- $\operatorname{det}\left(X^{\prime}\right)=B B^{\prime}$.
- There exists $g \in G L(\mathbb{C} X)$ and a 1-PS $\mu(t) \in G L(\mathbb{C} X)$ such that $\widehat{\operatorname{gdet}(X)}$ under μ is $B B^{\prime}$.
- $G_{B B^{\prime}}=G_{\operatorname{det}_{m}} \cap G_{\operatorname{det}(A Y)}=G_{\operatorname{det}_{m}} \cap\left(A^{-1} G_{\text {det }_{m}} A\right)$.
- There exists A for which the above is trivial, only identity element. example $A=\operatorname{diag}\left(t^{2^{i}}\right), 1 \leq i \leq a^{2}$ - generic matrix in $G L(\mathbb{C} X)$ there is a $S L(\mathbb{C} Y)$-stable form with trivial stabilizer in the orbit closure of $D e t_{2 m}$.

Theorem

Let $V_{\lambda}\left(\mathbb{C}^{m^{2}}\right)$ be an irreducible Weyl module with rows not exceeded m^{2}, then $\left.V_{\lambda}\left(\mathbb{C}^{(2 m)^{2}}\right)\right)$ is present in $\mathbb{C}\left[\overline{O_{V}(\operatorname{det}(X))}\right]$.

Sketch.

- The algebraic Peter Weyl Theorem, tells us that every $V_{\lambda}\left(\mathbb{C}^{m^{2}}\right)$ with at most m^{2}-parts occurs in the coordinate ring of the orbit of $B B^{\prime}$, since its stabilizer is trivial.
- Every such module occurs in the $G L\left(m^{2}\right)$ orbit of $B B^{\prime}$ since $B B^{\prime}$ is stable for $S L(\mathbb{C} Y)$, [MS 01][BMLW, 12].
- Every such module now occurs in the $G L\left((2 m)^{2}\right)$-orbit closure of $B B^{\prime}$, (Lifting Lemma)
- So each such module occurs in $G L\left((2 m)^{2}\right)$-orbit closure of $\operatorname{Det}(X)$

Stabilizer limits

Assumptions

- V is a $G L(X)$-representation with $t / d \cdot v=t^{c} v$.
- y is a stable form.
- $\lambda(t) y=t^{d} y_{d}+t^{e} y_{e}+$ higher terms. $z:=\hat{y}=y_{d}$ is the leading term picked up in the projective orbit closure by a 1-PS.
- y_{e} is not in the orbit of z.
- K is the stabilizer of y and H that of z.
- Note that if a form z is an affine projection of $y:=D e t_{n}$, then there is a 1 -PS acting λ such that $\hat{y}=z$. Studying limits picked up by 1-PS is relevant and useful.

Lie algebras - a quick recap

- $G:=G L(\mathbb{C} X)$ is a Lie group, it has the structure of a complex manifold. The tangent space at $l d$ is $\mathcal{G}:=\operatorname{End}(\mathbb{C} X)$. It is a Lie algebra under the bracket, $[A, B]=A B-B A$.
- When G acts on V elements of \mathcal{G} act as differential operators.
- The exponential map is a diffeomorphism from $\mathcal{G} \rightarrow G, A \mapsto e^{t A}$ in a neighbourhood of $I d$.
- The stabilizers K, H are Zariski-closed subgroups of $G L(\mathbb{C} X)$ and they are submanifolds of $G L(\mathbb{C X})$. Their Lie algebras, \mathcal{K}, \mathcal{H} are complex subspaces of $\operatorname{End}(\mathbb{C} X)$, and coincide with the tangent spaces at $I d$ to K, H respectively.
- If H is the stabilizer of a form f, differential operators in \mathcal{H} send f to 0 .
- G acts on $\mathcal{G}, G \rightarrow G L(\mathcal{G}), g \mapsto\left[\mathfrak{g} \rightarrow g \mathfrak{g} g^{-1}\right]$.

Restricting the above action to $\lambda(t) \subseteq G$,

$$
\lambda(t) \mathfrak{g}=\sum_{a} t^{a} \mathfrak{g}_{a}
$$

- Can talk of leading terms of every element in \mathcal{K}.

Example

- $X=\{x, y, z\}, f=\left(x^{2}+y^{2}+z^{2}\right)^{2} \in \operatorname{Sym}^{4}(X)$.
- The stabilizer algebra \mathcal{K} is given below.

$$
\mathcal{K}=\left[\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right]
$$

$$
a y \frac{\partial}{\partial x}+b z \frac{\partial}{\partial x}-a x \frac{\partial}{\partial y}+c z \frac{\partial}{\partial y}-b x \frac{\partial}{\partial z}-c y \frac{\partial}{\partial z}
$$

- $\lambda(t) \subseteq G L(X)$ given by $\lambda(x)=x, \lambda(y)=y$ and $\lambda(z)=t z$, as shown below.

$$
\lambda(t)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & t
\end{array}\right]
$$

- $g=\hat{f}=L T\left(\left(x^{2}+y^{2}+t^{2} z^{2}\right)^{2}\right)=\left(x_{2}+y^{2}\right)^{2}$. The stabilizer \mathcal{H} is as shown below:

$$
\mathcal{H}=\left[\begin{array}{ccc}
0 & a & c_{1} \\
-a & 0 & c_{2} \\
0 & 0 & c_{3}
\end{array}\right]
$$

- $\hat{K}=L T(\lambda, \mathcal{K})$ is given by the leading terms of

$$
\lambda(t) \mathcal{K} \lambda(t)^{-1}=\left[\begin{array}{ccc}
0 & a & t^{-1} b \\
-a & 0 & t^{-1} c \\
-t b & -t c & 0
\end{array}\right]
$$

- This is the Lie algebra of matrices with entries

$$
\left[\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
0 & 0 & 0
\end{array}\right] \subseteq \mathcal{H}
$$

Linking $\mathcal{K}, \mathcal{H}, \mathcal{H}_{y_{e}}$

Let $T_{z} O(z)=\mathcal{G} \cdot z$, the tangent space to the orbit $O(z)=G \cdot z$ at the point z. Then $V /\left(T_{z} O(z)\right)$ is an \mathcal{H}-module. We call this the \star-action. Let $\mathcal{H}_{y_{e}}$ be the stabilizer in \mathcal{H} of $\overline{y_{e}} \in V /\left(T_{z} O(z)\right)$.

Proposition

Let $z=\hat{y}$ and $\mathcal{H}=\operatorname{Lie}(H)$ and $\mathcal{K}=\operatorname{Lie}(K)$, where H, K are as above. Then i $\hat{\mathcal{K}} \subseteq \mathcal{H}$, thereby connecting \mathcal{K}, \mathcal{H}.
ii Let $y=y_{d}+y_{e}+\sum_{i>e} y_{i}$ be the decomposition of y by degrees, with $z=y_{d}$ and y_{e} as the tangent of approach. Let $\mathfrak{k} \in \mathcal{K}$ be given by $\mathfrak{k}_{a}+\mathfrak{k}_{a+1} \ldots$. Then $\mathfrak{k}_{a}, \ldots, \mathfrak{k}_{a+e-d-1} \in \mathcal{H}$ and $\mathfrak{k}_{a} \in \mathcal{H}_{y_{e}}$. So, $\hat{\mathcal{K}} \subseteq \mathcal{H}$. Moreover, $\mathfrak{k}_{a} \cdot \overline{y_{e}}=0$, so $\hat{\mathcal{K}} \subseteq \mathcal{H}_{y_{e}} \subseteq \mathcal{H}$.

The 3×3 Determinant case

- The two boundary components resolved by Hüttenhain in his thesis.

$$
\begin{aligned}
& Q_{1}(X)=\operatorname{det}\left(\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
x_{4} & x_{5} & x_{6} \\
x_{7} & x_{8} & -x_{5}-x_{1}
\end{array}\right]\right) \\
& \operatorname{det}_{3}(X)=Q_{1}(X)+\left(x_{1}+x_{5}+x_{9}\right)\left(x_{1} x_{5}-x_{2} x_{4}\right)
\end{aligned}
$$

- Set $Y=\left\{x_{1}, \ldots, x_{8}\right\}$ and $Z=\left\{x_{1}+x_{5}+x_{9}\right\}$.
- $\lambda^{1}(t) \in G L(X)$ as $\lambda^{1}(t) x_{i}=x_{i}$ for $i=1, \ldots, 8$ and $\lambda^{1}(t)(z)=t z$, where $z=\left(x_{1}+x_{5}+x_{9}\right)$.

$$
\lambda^{1}(t) \cdot \operatorname{det}_{3}(X)=Q_{1}+t \cdot Q_{1}^{\prime}
$$

- $d=0, e=1$, the limit $z^{1}=Q_{1}$, the tangent of approach $y_{e}:=Q_{1}^{\prime}$.
- $\mathcal{H}_{1}=\ell^{1} \oplus \hat{\mathcal{K}}^{1}$, where $t^{\ell^{1}}=\lambda^{1}(t)$ and $\hat{\mathcal{K}}^{1}$ is the leading term algebra.
- $\hat{\mathcal{K}}^{1}=\mathcal{H}_{y_{e}}^{1}$, the stabilizer of the tangent of approach, and $\left[\ell^{1}, \hat{\mathcal{K}}^{1}\right]=\hat{\mathcal{K}}^{1}$.

The 3×3 Determinant case...

$$
Q_{2}(X)=x_{4} x_{1}^{2}+x_{5} x_{2}^{2}+x_{6} x_{3}^{2}+x_{7} x_{1} x_{2}+x_{8} x_{2} x_{3}+x_{9} x_{1} x_{3}
$$

Lemma (Hüettenhain)

Let Y, Z be the generic matrices below and let $X=Y \oplus Z$.

$$
Y=\left[\begin{array}{ccc}
0 & x_{1} & -x_{2} \\
-x_{1} & 0 & x_{3} \\
x_{2} & -x_{3} & 0
\end{array}\right] \quad Z=\left[\begin{array}{ccc}
2 x_{6} & x_{8} & x_{9} \\
x_{8} & 2 x_{5} & x_{7} \\
x_{9} & x_{7} & 2 x_{4}
\end{array}\right]
$$

Let $\lambda^{2}(t)$ be such that $\lambda^{2}(t) \cdot Y=Y$ and $\lambda_{2}(t) \cdot Z=t Z$. Let us define $\operatorname{det}^{3}(X)$ as the determinant of the matrix $Y+Z$. Then:

$$
\left.\operatorname{det}^{3}\left(\lambda^{2}(t) \cdot X\right)\right)=\operatorname{det}(Y+t Z)=t Q_{2}+t^{3} Q_{3}
$$

where:

$$
\begin{aligned}
Q_{2}(X) & =x_{4} x_{1}^{2}+x_{5} x_{2}^{2}+x_{6} x_{3}^{2}+x_{7} x_{1} x_{2}+x_{8} x_{2} x_{3}+x_{9} x_{1} x_{3} \\
Q_{2}^{\prime}(X) & =8 x_{4} x_{5} x_{6}-2 x_{6} x_{7}^{2}-2 x_{4} x_{8}^{2}-2 x_{5} x_{9}^{2}+2 x_{7} x_{8} x_{9}
\end{aligned}
$$

The 3×3 Determinant case...

The 3×3 Determinant case...

- $z^{2}=Q_{2}$ is the limit, $d=1$ and $e=3 . y_{e}:=Q_{2}^{\prime}$ is the tangent of approach
- $\mathcal{H}_{2}=\ell^{2} \oplus \hat{\mathcal{K}}^{2}$, where $t^{\ell^{2}}=\lambda^{2}(t)$ and $\hat{\mathcal{K}}^{2}$ is the leading term algebra of \mathcal{K} under $\lambda^{2}(t)$.
- $\hat{\mathcal{K}}^{2}=\mathcal{H}_{y_{e}}^{3}$, the stabilizer of the tangent of approach, and $\left[\ell^{2}, \hat{\mathcal{K}}^{2}\right]=\hat{\mathcal{K}}^{2}$.

The 3×3 Determinant case...

- $z^{2}=Q_{2}$ is the limit, $d=1$ and $e=3 . y_{e}:=Q_{2}^{\prime}$ is the tangent of approach
- $\mathcal{H}_{2}=\ell^{2} \oplus \hat{\mathcal{K}}^{2}$, where $t^{\ell^{2}}=\lambda^{2}(t)$ and $\hat{\mathcal{K}}^{2}$ is the leading term algebra of \mathcal{K} under $\lambda^{2}(t)$.
- $\hat{\mathcal{K}}^{2}=\mathcal{H}_{y_{e}}^{3}$, the stabilizer of the tangent of approach, and $\left[\ell^{2}, \hat{\mathcal{K}}^{2}\right]=\hat{\mathcal{K}}^{2}$.
- Recipe to get hold of λ_{1}, λ_{2} ?
- \hat{K}^{1} is obtained via the injection $S L_{3} \rightarrow S L_{3} \times S L_{3}, A \rightarrow A \times A^{-1}$.
- The reductive part of $\hat{\mathcal{K}}^{1}$ is the $s l_{3}$-module $\mathbb{C}^{8} \oplus \mathbb{C}^{1}$, corresponding the break-up of $X=X^{\prime} \oplus c l$, the trace zero matrices X^{\prime} and the identity matrix.
- $\lambda_{1}(t)$ commutes with the reductive part!
- $\hat{\mathcal{K}}^{2}$ is obtained via the injection $S L_{3} \rightarrow S L_{3} \times S L_{3}, A \rightarrow A \times A^{T}$.
- The reductive part of $\hat{\mathbb{K}}^{2}$ is the diagonal embedding of $s l_{3}$ via $\left(\operatorname{Sym}^{2}\left(\mathbb{C}^{3}\right)\right)^{*} \oplus \operatorname{Sym}^{1}\left(\mathbb{C}^{3}\right)$ corresponding to the break-up of X as symmetric and antisymmetric matrices.
- $\lambda_{2}(t)$ commutes with the reductive part!

Intermediate G-stable varieties

Sandwich varieties

- I_{z} ideal of z in $\mathbb{C}[V], I_{y}$ ideal of y in $\mathbb{C}[V]$. Both are G-stable and $I_{y} \subseteq I_{z}$.
- Use the direction of approach, y_{e} to z, to construct (suitable)-derivations
- directional derivatives in the direction $g y_{e}$ at $g z$ for every $g \in G$.
- The first thickening is:

$$
J^{1}(\lambda)=\left\{f \in I_{z} \mid D_{g z, g y_{e}}^{1}(f)=0 \text { for all } g \in G\right\}
$$

- The higher thickenings are

$$
J^{k}(\lambda)=\left\{f \in I_{z}^{k} \mid D_{g z, g y_{e}}^{1}(f)=0 \text { for all } g \in G\right\}
$$

- This construction depends only on z and the representative of y_{e} in $T_{z}(V) / T_{z}\left(O_{z}\right)$.
- Set $R_{i}=l_{z}^{i} / l_{z}^{i+1}, R_{z}=\oplus R_{i}$. Can be used to get a filtration of $J=\oplus_{i} J^{i}$, J.
- Get a G-map from $R_{z} / J \rightarrow \mathbb{C}[G]^{H_{y_{e}}}$ which allows for reasoning about I_{z} / I_{y} and a filtration of it.

Sandwich varieties

- $\lambda(t) \cdot y=t^{d} z+t^{e} y_{e}+\ldots+t^{D} y_{D}$
- Let $y^{\prime}=g y$ and $\lambda(t) \cdot y^{\prime}=t^{a} y_{a}^{\prime}+\ldots+t^{b} y_{b}^{\prime}$.
- Set $Y_{d}=\left\{y^{\prime}=g y \mid y_{a}^{\prime}=0\right.$ for all $\left.a<d\right\}$ - those elements in $O(y)$ for which $\operatorname{deg}\left(\hat{y}^{\prime}\right) \geq d$.
- Let V_{d} be the degree d subspace of V under λ, and consider the projection $\pi_{d}: V \rightarrow V_{d}$.
- Let $Z_{d}(\lambda)=\pi_{d}\left(Y_{d}\right)$.
- Every $z^{\prime} \in Z_{d}$ is in $O\left(y^{\prime}\right)$, so $\overline{G Z_{d}} \subset \overline{O(y)}$, thus constraining possible y. There is a natural lower bound on the codimension of $O(z)$ in Z_{d} - based on $\mathcal{H} / \mathcal{H}_{y_{e}}, \mathcal{H}_{y_{e}} / \hat{K}$.

Conclusions:

- New proof of why the no occurrence obstructions needs refinement.
- 1-PS subgroups commuting with of large subgroups of K give give us degree 0 components of $\hat{\mathcal{K}}$ (reductive subalgebras) which go into \mathcal{H}.
- The thickening varieties allow us to reason about the filtration I_{y} / I_{z}. Modules in the coordinate ring of y which are not related to H are in the kernel \bar{J} / I_{y}. Modules are related to $H, H_{y_{e}}$.
- Construction of the variety $Z(d)$ which constrains possible y.

