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• We study a notion in algebraic complexity theory called

the subrank of tensors
,

which measures how much a tensor

can be diagonalized

•
The subrank was introduced by Strassen in got to study
fast matrix multiplication algorithms

•
and has connections to several problems in math and physics



•
Our results :

1
.
Random tensors

we determine the subrank for random tensors

2
. Asymptotic gaps
we determine gaps in the rate of growth of sub rank
under powering

• Improve on previous bounds of Strassen & Biirgisser ( igdf- iggi )



i. Subrank and Applications

2
.
Subrank of random tensors

3. Upper bound

4. Lower bound ingredient : tensor space decomposition

5. Application : non - additivity of subranfc

6 . Asymptotic gaps
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Subrank is different from tensor rank !

Tensorrank-
• Matrix multiplicationminimizes 4 ?;;÷ˢCircuit complexity! = É uixovixwi ( Rt )Equiv :
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Applications of Subrank

• Complexity Theory number of independent scalar multiplications that
can be reduced to a bilinear map

used in recursive constructions of matrix Mutt . algos .

•
Quantum Information measure of entanglement (of GHZ type )

• Combinatorics upper bound on hypergraph independence

E.g . cap sets ,
sunflowers, corners . . . .
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•• Very precise bounds : VÑ-5 ≤ QCT) ≤ V3nI

•• Previously : ⑦ (T) ≤ n
2/3+041

• Also for higher-order tensors

• Application : Subrank is not additive under direct sum
.
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3. Upper bound

Qln ) : = subrank of a generic tensor in #
"✗" ✗ n

To prove : ① ( n) ≤ V3nI

Cr : = { tensors in #
"" × "

with subrank ≥ r }
¥1 Qln) = largest r such that dim Cr = dim #

""✗ n

¥ dim Cr ≤ n3- r( r2 - 3h +2)

Let t = Qln ) .

Then n' = dim Ct ≤ n
3- tct 2- 3h +2) .

Then t 2- 3Mt 2 ≤ 0

So t ≤ V3n-
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I
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Cr : = { tensors in #
"""^

with subrank ≥ r }
Lemma 2 dim Cr ≤ n3- r( r 2- 3h +2)
-

Proofidea

• non- injective parametrization of Cr

• Compute dimension of parameter space

• Subtract dimension of
"

over- count
"

( fiber dimension )

✗ r = { tensors in #
"""

with tr] ✗ [r ] ✗ [r ] subtensor arbitrary diag .}
Hr : Glen ✗ G-Ln ✗ Glen ✗ ✗

r
→ #

n×n×n

(A ,
B
,
C

,

T ) ↳ (1-④ B ④C)T has image Cr

☐
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Theory there are subspaces ✗ i C- Matz
, }
of dim 3 each

,
such that

#
3×3×3

= ✗
,
[I ] + ✗

,
[2 ] t ✗

3
[3 ] .

Note : dimensions match .

Altmark hot possible with matrices : there are no subspaces

✗ i C- Fn of dimension % each such that #
"✗"

= X.tl ] + Xztz]

theorem there are subspaces ✗ i e #
n)④

""

of dim n

"-2
each

,
such that

#
^)④

"

= ✗
,
IT ] + ×

,
[2 ] + . . . + Xn In ] .

Again : dimensions match
.
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5. Application : Subrank is not additive under direct sum

Theorem there are tensors S
,
T C- F-

"✗"✗"
such that QIS )

,
QIT) ≤ V3n→

while QLS +0T ) ≥ n .

Proof idea

• Let t be
"

random !

• Let s = In - T .

Then S is
"

random
"

.

• Then Q( S )
,
QLT ) ≤ V3n7 by our theorem

.

• On the other hand
,
Q (Stt ) ≥ QIS +T) = ① ( In ) = n

. ☐



6. Asymptotic gap
in the subrank

Se V
, ④ V2 ④ V3

TE Wi ④ Wz ④ W }

Kronecker product : S ☒T c- (V, ④Wi) ④ (V2 ④Wz ) ④ /V3 ④W} )

Suhana is super- multiplicative : ☒ ( s ☒T ) ≥ QISIQIT )
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Problem :
How does Q( 1- ☒

n

) grow when n grows ?

theorem let TeV,
④V2 ④ V3 be any tensor .

Exactly one of the following is true :

i) T= 0

ii) Q IT
☒n ) = i

n - 01h )
iii) Q ( 1-

☒" ) = 1.88

in Q ( 1-☒ " ) ≥ 2h

Proofidea Classification

is 1- = ◦ fiii)
T is equivalent to the W - tensor

ii) T has flattening rank one iv ) T restricts to 2×2×2 diagonal .



Selected Open Problems

i. Our upper bound QIT) ≤ LV3n⇒ for geneve TE #
"✗"×"

is tight for n ≤ too . Is this always true ?

2
. Determine all possible tensor space decompositions

3
.
What is the largest gap between QCS +0T) and Q /5) +QIT ) ?

4
.

What are the next asymptotic gaps ?


