Subrank of Tensors

Jeroen Zuiddam

Joint work with Christand, Derksen, Gesmundo, Makam

- We study a notion in algebraic complexity theory called the subrank of tensors, which measures how much a tensor can be diagonalized
- The subrank was introduced by Strassen in $1 g 87$ to study fast matrix multiplication algorithms
- and has connections to several problems in math and physics
- our results:

1. Random tensors

We determine the subrank for random tensors
2. Asymptotic gaps

We determine gaps in the rate of growth of subrank under powering

- Improve on previous bounds of Strassen \& Bürgisser (1g87-19g1)

1. Subrank and Applications
2. Subrank of random tensors
3. Upper bound
4. Lower bound ingredient: tensor space decomposition
5. Application: hon-additivity of subrank
6. Asymptotic gaps
7. Subrank and Applications
matrix rank

linear combinations of rows and columns

Subrank

linear combinations of slices in all three directions

Subrank is different from tensor rank!

Applications of Subranke

- Complexity Theory
number of independent scalar multiplications that can be reduced to a bilinear map used in recursive constructions of matrix mult. algos.
- Quantum Information measure of entanglement (of GHZ type)
- Combinatorics upper bound on hypergraph independence Egg. cap sets, sunflowers, corners,...

Relation to other parameters

$$
\begin{aligned}
& T \in \mathbb{F}^{n \times n \times n} \\
& 0 \leq Q(T) \leq S R(T) \leq n \leq R(T) \leq n^{2} \\
& A R(T) \\
& G R(T) \\
& R^{G}(T)
\end{aligned}
$$

Slice rank

linear combinations of slices in all three directions m

minimize $a+b+c$

Geometric rank
$\operatorname{codim}\left\{(u, v) \in \mathbb{F}^{n} \times \mathbb{F}^{n}: \forall \omega T(u, v, w)=0\right\}$

$$
G R(T)
$$

Relation to other parameters

$$
\begin{aligned}
& T \in \mathbb{F}^{n \times n \times n} \\
& 0 \leq Q(T) \leq S R(T) \leq n \leq R(T) \leq n^{2} \\
& A R(T) \\
& G R(T) \\
& R^{G}(T)
\end{aligned}
$$

On random tensors T :
2. Subrank of Random Tensors

Theorem For almost all $T \in \mathbb{F}^{n \times n \times n}$ we have $Q(T)=\theta(\sqrt{n})$
2. Subrank of Random Tensors

Theorem For almost all $T \in \mathbb{F}^{n \times n \times n}$ we have $Q(T)=\theta(\sqrt{n})$
Remarks:

- "Almost all" = "random" = generic

2. Subrank of Random Tensors

Theorem For almost all $T \in \mathbb{F}^{n \times n \times n}$ we have $Q(T)=\theta(\sqrt{n})$
Remarks:

- "Almost all" = "random" = generic
- That is, there is a nonempty zarisk-open $U \subseteq \mathbb{F}^{n \times n \times n}$ such that for all $T \in U$ we have $Q(T)=\theta(\sqrt{n})$

2. Subrank of Random Tensors

Theorem For almost all $T \in \mathbb{F}^{n \times n \times n}$ we have $Q(T)=\theta(\sqrt{n})$
Remarks:

- "Almost all" = "random" = generic
- That is, there is a nonempty zarisk-open $U \subseteq \mathbb{F}^{n \times n \times n}$ such that for all $T \in U$ we have $Q(T)=\theta(\sqrt{n})$
- Very precise bounds: $\sqrt{3 n-2}-5 \leq Q(T) \leq \sqrt{3 n-2}$

2. Subrank of Random Tensors

Theorem For almost all $T \in \mathbb{F}^{n \times n \times n}$ we have $Q(T)=\theta(\sqrt{n})$
Remarks:

- "Almost all" = "random" = generic
- That is, there is a nonempty zarisk-open $U \subseteq \mathbb{F}^{n \times n \times n}$ such that for all $T \in U$ we have $Q(T)=\theta(\sqrt{n})$
- Very precise bounds: $\sqrt{3 n-2}-5 \leq Q(T) \leq \sqrt{3 n-2}$
- Previously: $Q(T) \leq n^{2 / 3+o(1)}$
- Also for higher-order tensors

2. Subrank of Random Tensors

Theorem For almost all $T \in \mathbb{F}^{n \times n \times n}$ we have $Q(T)=\theta(\sqrt{n})$

Remarks:

- "Almost all" = "random" = generic
- That is, there is a nonempty Zarisk-open $U \subseteq \mathbb{F}^{n \times n \times n}$ such that for all $T \in U$ we have $Q(T)=\theta(\sqrt{n})$
- Very precise bounds: $\sqrt{3 n-2}-5 \leq Q(T) \leq \sqrt{3 n-2}$
- Previously: $Q(T) \leq n^{2 / 3+o(1)}$
- Also for higher-order tensors
- Application: Subrank is not additive under direct sum.

3. Upper bound
$Q(n):=$ subrank of a generic tensor in $\mathbb{F}^{n \times n \times n}$
To prove: $Q(n) \leq \sqrt{3 n-2}$
4. Upper bound
$Q(n):=$ subrank of a generic tensor in $\mathbb{F}^{n \times n \times n}$
To prove: $Q(n) \leq \sqrt{3 n-2}$

$$
C_{r}:=\left\{\text { tensors in } \mathbb{F}^{n \times n \times n} \text { with subrank } \geqslant r\right\}
$$

3. Upper bound
$Q(n):=$ subrank of a generic tensor in $\mathbb{F}^{n \times n \times n}$
To prove: $Q(n) \leq \sqrt{3 n-2}$
$C_{r}:=\left\{\right.$ tensors in $\mathbb{F}^{n \times n \times n}$ with subrank $\left.\geqslant r\right\}$
Lemma $Q(n)=$ largest r such that $\operatorname{dim} C_{r}=\frac{\operatorname{dim} \mathbb{F}^{n \times n \times n}}{n^{3}}$.
Lemma 2 $\operatorname{dim} C_{r} \leq n^{3}-r\left(r^{2}-3 n+2\right)$
4. Upper bound
$Q(n):=$ subrank of a generic tensor in $\mathbb{F}^{n \times n \times n}$
To prove: $Q(n) \leq \sqrt{3 n-2}$
$C_{r}:=\left\{\right.$ tensors in $\mathbb{F}^{n \times n \times n}$ with subrank $\left.\geqslant r\right\}$
Lemma $Q(n)=$ largest r such that $\operatorname{dim} C_{r}=\frac{\operatorname{dim} \mathbb{F}^{n \times n \times n}}{n^{3}}$.
Lemma $2 \operatorname{dim} C_{r} \leq n^{3}-r\left(r^{2}-3 n+2\right)$
Let $t=Q(n)$.
Then $n^{3}=\operatorname{dim} C_{t} \leq n^{3}-t\left(t^{2}-3 n+2\right)$.
Then $t^{2}-3 n+2 \leq 0$
So $t \leq \sqrt{3 n-2}$
$C_{r}:=\left\{\right.$ tensors in $\mathbb{F}^{n \times n \times n}$ with subrank $\left.\geqslant r\right\}$
Lemma $2 \operatorname{dim} C_{r} \leq n^{3}-r\left(r^{2}-3 n+2\right)$

$$
C_{r}:=\left\{\text { tensors in } \mathbb{F}^{n \times n \times n} \text { with subrank } \geqslant r\right\}
$$

Lemma $2 \operatorname{dim} C_{r} \leq n^{3}-r\left(r^{2}-3 n+2\right)$
Proof idea

- Non-injective parametrization of C_{r}
- Compute dimension of parameter space
- Subtract dimension of "over-count" (fiber dimension)
$C_{r}:=\left\{\right.$ tensors in $\mathbb{F}^{n \times n \times n}$ with subrank $\left.\geqslant r\right\}$
Lemma $2 \operatorname{dim} C_{r} \leq n^{3}-r\left(r^{2}-3 n+2\right)$
Proof idea
- Non-injective parametrization of C_{r}
- Compute dimension of parameter space
- Subtract dimension of "over-count" (fiber dimension)
$X_{r}=\left\{\right.$ tensors in $\mathbb{F}^{n \times n \times n}$ with $[r] \times[r] \times[r]$ subtensor arbitrary diag. $\}$

$$
\psi_{r}: G L_{n} \times G L_{n} \times G L_{n} \times X_{r} \rightarrow \mathbb{F}^{n \times n \times n}
$$

$(A, B, C, T) \mapsto(A \otimes B \otimes C) T \quad$ has image C_{r}
4. Tensor space decompositions

Goal: write tensor space $\mathbb{F}^{n \times n \times n}$ as a sum of tensor subspaces, as efficiently as possible such that each subspace has the form of an $n \times n$ matrix subspace tensored with \mathbb{F}^{n}
4. Tensor space decompositions

Goal: write tensor space $\mathbb{F}^{n \times n \times n}$ as a sum of tensor subspaces, as efficiently as possible such that each subspace has the form of an $n \times n$ matrix subspace tensored with \mathbb{F}^{n}

$$
\begin{array}{ll}
X \subseteq \text { mat }_{n \times n}=\mathbb{F}^{n} \otimes \mathbb{F}^{n} & X[1]=\mathbb{F}^{n} \otimes X \subseteq \mathbb{F}^{n \times n \times n} \\
& X[3]=X \otimes \mathbb{F}^{n} \subseteq \mathbb{F}^{n \times n \times n} \\
& X[2]=
\end{array}
$$

4. Tensor space decompositions

Goal: write tensor space $\mathbb{F}^{n \times n \times n}$ as a sum of tensor subspaces, as efficiently as possible such that each subspace has the form of an $n \times n$ matrix subspace tensored with \mathbb{F}^{n}

$$
\begin{array}{ll}
X \subseteq \text { mat }_{n \times n}=\mathbb{F}^{n} \otimes \mathbb{F}^{n} & X[1]=\mathbb{F}^{n} \otimes X \subseteq \mathbb{F}^{n \times n \times n} \\
& X[3]=X \otimes \mathbb{F}^{n} \subseteq \mathbb{F}^{n \times n \times n} \\
& X[2]=
\end{array}
$$

Theorem There are subspaces $X_{i} \subseteq$ Mat $_{3,3}$ of dim 3 each, such that

$$
\mathbb{F}^{3 \times 3 \times 3}=X_{1}[1]+X_{2}[2]+X_{3}[3]
$$

Theorem There are subspaces $X_{i} \subseteq$ Mat $_{3,3}$ of dim 3 each, such that

$$
\mathbb{F}^{3 \times 3 \times 3}=X_{1}[1]+X_{2}[2]+X_{3}[3] .
$$

note: dimensions match.

Theorem There are subspaces $X_{i} \subseteq$ Mat $_{3,3}$ of dim 3 each, such that

$$
\mathbb{F}^{3 \times 3 \times 3}=X_{1}[1]+X_{2}[2]+X_{3}[3]
$$

note: dimensions match.

Remark Not possible with matrices: there are no subspaces $X_{i} \subseteq \mathbb{F}^{n}$ of dimension $n / 2$ each such that $\mathbb{F}^{n \times n}=X_{1}[1]+X_{2}[2]$

Theorem There are subspaces $X_{i} \subseteq$ Mat $_{3,3}$ of dim 3 each, such that

$$
\mathbb{F}^{3 \times 3 \times 3}=X_{1}[1]+X_{2}[2]+X_{3}[3] .
$$

note: dimensions match.

Remark Not possible with matrices: there are no subspaces $X_{i} \subseteq \mathbb{F}^{n}$ of dimension $n / 2$ each such that $\mathbb{F}^{n \times n}=X_{1}[1]+X_{2}[2]$

Theorem There are subspaces $X_{i} \subseteq\left(\mathbb{F}^{n}\right)^{\otimes n-1}$ of $\operatorname{dim} n^{n-2}$ each, such that $\left(\mathbb{F}^{n}\right)^{\otimes n}=X_{1}[1]+X_{2}[2]+\cdots+X_{n}[n]$.

Again: dimensions match.
5. Application: Subrank is not additive under direct sum

Theorem There are tensors $S, T \in \mathbb{F}^{n \times n \times n}$ such that $Q(S), Q(T) \leq \sqrt{3 n-2}$ while $Q(S \oplus T) \geqslant n$.
5. Application: Subrank is not additive under direct sum

Theorem There are tensors $S, T \in \mathbb{F}^{n \times n \times n}$ such that $Q(S), Q(T) \leq \sqrt{3 n-2}$ while $Q(S \oplus T) \geqslant n$.

Proof idea

- Let T be "random."
- Let $S=I_{n}-T$. Then S is "random".
- Then $Q(S), Q(T) \leq \sqrt{3 n-2}$ by our theorem.
- On the other hand, $Q(S \oplus T) \geqslant Q(S+T)=Q\left(I_{n}\right)=n$.

6. Asymptotic gap in the subrank
$S \in V_{1} \otimes V_{2} \otimes V_{3}$
$T \in W_{1} \otimes W_{2} \otimes W_{3}$
kronecker product: $S \otimes T \in\left(V_{1} \otimes W_{1}\right) \otimes\left(V_{2} \otimes W_{2}\right) \otimes\left(V_{3} \otimes W_{3}\right)$
Subrank is super-multiplicative: $Q(S \boxtimes T) \geqslant Q(S) Q(T)$

Problem: How does $Q\left(T^{\otimes n}\right)$ grow when n grows?

Problem: How does $Q\left(T^{\otimes n}\right)$ grow when n grows?
Theorem Let $T \in V_{1} \otimes V_{2} \otimes V_{3}$ be any tensor. Exactly one of the following is true:
i) $T=0$
ii) $Q\left(T^{\otimes n}\right)=1$
iii) $Q\left(T^{\otimes n}\right)=1.88^{n-o(n)}$
iv) $Q\left(T^{\otimes n}\right) \geqslant 2^{n}$

Problem: How does $Q\left(T^{\otimes n}\right)$ grow when n grows?
Theorem Let $T \in V_{1} \otimes V_{2} \otimes V_{3}$ be any tensor. Exactly one of the following is true:
i) $T=0$
ii) $Q\left(T^{\otimes n}\right)=1$
iii) $Q\left(T^{\otimes n}\right)=1.88^{n-o(n)}$
iv) $Q\left(T^{\otimes n}\right) \geqslant 2^{n}$

Proof idea Classification
i) $T=0$
iii) T is equivalent to the W-tensor
ii) T has flattening rank one
iv) T restricts to $2 \times 2 \times 2$ diagonal.

Selected Open Problems

1. Our upper bound $Q(T) \leq\lfloor\sqrt{3 n-2}\rfloor$ for generre $T \in \mathbb{F}^{n \times n \times n}$ is tight for $n \leq 100$. Is this always true?
2. Determine all possible tensor space decompositions
3. What is the largest gap between $Q(S \oplus T)$ and $Q(S)+Q(T)$?
4. What are the next asymptotic gaps?
