Subrank of Tensors

Jeroen Zuiddam

Joint work with Christandl, Derksen, Gesmundo, Makam

- . We study a notion in algebraic complexity theory called the subrank of tensors, which measures how much a tensor can be diagonalized
- . The subrank was introduced by Strassen in 1987 to study fast matrix multiplication olgorithms
- . and has connections to several problems in moth and physics

- . Our results :
 - 1. Random tensors

We determine the subrank for random tensors

2 Asymptotic gaps

We determine gops in the rate of growth of subrank under powering

. Improve on previous bounds of Strassen & Bürgisser (1987-1991)

- 1. Subrank and Applications
- 2. Subrank of random tensors

3. Upper bound

4. Lower bound ingredient: tensor space decomposition

6. Asymptotic gaps

1. Subrank and Applications Matrix rank

max r

Subrank is different from tensor rank!

Tensor rank
minimize

$$T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i$$
Equiv:

$$T = U \otimes V \otimes W \cdot \sum_{i=1}^{r} e_i \otimes e_i \otimes e_i$$
Subrank

$$S \longleftarrow \max inize$$

$$\sum_{i=1}^{r} e_i \otimes e_i \otimes e_i = U \otimes V \otimes W \cdot T$$

Applications · Matrix multiplication . Circuit complexity [Raz] · Matrix Multiplication . Additive Combinatorics

R(T)

 $Q(\top)$

Applications of Subrank

· Complexity Theory

number of independent scalar multiplications that can be reduced to a bilinear map

used in recursive constructions of matrix mult. algos.

. Quantum Information measure of entangrement (of GHZ type)

. Combinatorics

upper bound on hypergrouph independence E.g. cap bets, sunflowers, corners,... Relation to other parameters

TEFNXNXN

$$o \in Q(T) \in SR(T) = n \in R(T) \leq n^{2}$$

 $AR(T)$
 $GR(T)$
 $R^{G}(T)$

-

Geometric rank
codim
$$\int (u,v) \in \#^n \times \#^n : \forall W \top (u,v,W) = o$$

GR(T)

- •
- •

Relation to other parameters

T E F NXNXN

$$o \in Q(T) \in SR(T) = n \in R(T) \leq n^{2}$$

$$AR(T)$$

$$GR(T)$$

$$R^{G}(T)$$

$$Ch random$$

$$tensors T.$$

$$R^{O}(T)$$

$$\approx n^{2}$$

2. Subrank of Random Tensors

Theorem For almost all
$$T \in \mathbb{F}^{n \times n \times n}$$
 we have $Q(T) = \theta(\sqrt{n})$

2. Subrank of Random Tensors

Theorem For almost all
$$T \in \mathbb{F}^{n \times n \times n}$$
 we have $Q(T) = \theta(\sqrt{n})$

Remarks:

Theorem For almost all
$$T \in \mathbb{F}^{n \times n \times n}$$
 we have $Q(T) = \theta(\sqrt{n})$
Remarks:

• "Amost all" = "random" = generic • that is, there is a non-empty Zarisk-open $U \subseteq \mathbb{P}^{n \times n \times n}$ such that for all $\top \in U$ we have $\mathbb{Q}(\top) = \theta(\sqrt{n})$

Theorem For almost all
$$T \in \mathbb{F}^{n \times n \times n}$$
 we have $Q(T) = \theta(\sqrt{n})$
Remarks:

"Amost all" = "random" = generic
 that is, there is a nonempty Zarisk-open U ⊆ #^{n×n×n} such that for all T∈U we have Q(T) = θ(√n⁷)

• Very precise bounds: $\sqrt{3n-2}^{-5} \in Q(T) \leq \sqrt{3n-2}^{-5}$

Theorem For almost all
$$T \in \mathbb{F}^{n \times n \times n}$$
 we have $Q(T) = \theta(\sqrt{n})$

Remarks:

- "Amost all" = "random" = generic • that is, there is a non-empty Zarisk-open $U \subseteq \mathbb{P}^{n \times n \times n}$ such that for all $\top \in U$ we have $\mathbb{Q}(\top) = \theta(\sqrt{n})$
- Very precise bounds: $\sqrt{3n-2}^{-5} \in Q(T) \leq \sqrt{3n-2}^{-5}$
- Previously: $\hat{Q}(T) \leq n^{2/3 + o(1)}$
- · Also for higher-order tensors

Theorem For almost all
$$T \in \mathbb{F}^{n \times n \times n}$$
 we have $Q(T) = \theta(\sqrt{n})$

Remarks:

- "Amost all" = "random" = generic • that is, there is a non-empty Zarisk-open $U \subseteq \mathbb{P}^{n \times n \times n}$ such that for all $\top \in U$ we have $\mathbb{Q}(\top) = \theta(\sqrt{n})$
- Very precise bounds: $\sqrt{3n-2}^{-5} \in Q(T) \leq \sqrt{3n-2}^{-5}$
- Previously: $Q(T) \leq n^{2/3 + o(1)}$
- · Also for higher-order tensors
- . Application : Subrank is not additive under direct sum.

3. Upper bound Q(n) := subrank of a generic tensor in $\mathbb{F}^{n \times n \times n}$ To prove: $Q(n) \in \sqrt{3n-2}$

3. Upper bound Q(n) := subrank of a generic tensor in $\mathbb{F}^{n \times n \times n}$ To prove: $Q(n) \in \sqrt{3n-2}$

$$C_r := \{ \text{ tensors in } \mathbb{F}^{n \times n \times n} \text{ with subrank } \ge r \}$$

3. Upper bound

$$Q(n) :=$$
 subrank of a generic tensor in $\mathbb{F}^{n \times n \times n}$
To prove: $Q(n) \leq \sqrt{3n-2}$
 $C_r := \{ \text{tensors in } \mathbb{F}^{n \times n \times n} \text{ with subrank } \geq r \}$
Lemma 1 $Q(n) =$ largest r such that dim $C_r = \frac{\dim \mathbb{F}^{n \times n \times r}}{n^3}$

Lemma 2 dim $C_r \leq n^3 - r(r^2 - 3n + 2)$

3. Upper bound

$$Q(n) :=$$
 subrank of a generic tensor in $\mathbb{F}^{n \times n \times n}$
To prove: $Q(n) \in \sqrt{3n-2}$

$$C_{r} := \begin{cases} \text{tensors in } \mathbb{F}^{n \times n \times n} & \text{with subrank } \mathbb{Z} \cap f \\ \frac{\text{Lemma 1}}{n} & \mathbb{Q}(n) = \text{largest } r & \text{such that } \dim C_{r} = \frac{\dim \mathbb{F}^{n \times n \times n}}{n^{3}} \\ \frac{\text{Lemma 2}}{n^{3}} & \dim C_{r} \leq n^{3} - r(r^{2} - 3n + 2) \end{cases}$$

Let
$$t = Q(n)$$

Then $n^3 = \dim C_t \leq n^3 - t(t^2 - 3n + 2)$.
Then $t^2 - 3n + 2 \leq 0$
So $t \leq \sqrt{3n - 2}$

$$C_r := \{ \text{ tensors in } \mathbb{F}^{n \times n \times n} \text{ with subrank } \ge r \}$$

Lemma 2 dim $C_r \le n^3 - r(r^2 - 3n + 2)$

$$C_r := \{ \text{ tensors in } \mathbb{F}^{n \times n \times n} \text{ with subrank } \ge r \}$$

Lemma 2 dim $C_r \le n^3 - r(r^2 - 3n + 2)$

Proof idea

- . Non-injective parametrization of Cr
- . Compute dimension of parameter space
- · Subtract dimension of "over-count" (fiber dimension)

$$C_r := \{ \text{ tensors in } \mathbb{F}^{n \times n \times n} \text{ with subrank } \ge r \}$$

Lemma 2 dim $C_r \le n^3 - r(r^2 - 3n + 2)$

Proof idea

- . Non-injective parametrization of Cr
- . Compute dimension of parameter space
- · Subtract dimension of "over-count" (fiber dimension)

$$\begin{aligned} X_{r} &= \begin{cases} \text{tensors in } \#^{n \times n \times n} & \text{with } [r] \times [r] \times [r] & \text{subtensor arbitrary aliag.} \end{cases} \\ \Psi_{r} &: & \text{GL}_{n} \times \text{GL}_{n} \times \text{GL}_{n} \times X_{r} \rightarrow \#^{n \times n \times n} \\ & (A, B, C, T) & \mapsto (A \otimes B \otimes C) T & \text{has image } C_{r} \end{aligned}$$

4. Tensor space decompositions

Goal: write tensor space $\mathbb{F}^{n \times n \times n}$ as a sum of tensor subspaces, as efficiently as possible such that each subspace has the form of an nxn matrix subspace tensored with \mathbb{F}^n

4. Tensor space decompositions

Good: write tensor space $\mathbb{F}^{n \times n \times n}$ as a sum of tensor subspaces, as efficiently as possible such that each subspace has the form of an nxn matrix subspace tensored with \mathbb{F}^n

$$X \subseteq Mat_{nxn} = \#^{n} \otimes \#^{n} \qquad X[i] = \#^{n} \otimes X \subseteq \#^{n \times n \times n}$$
$$X[3] = X \otimes \#^{n} \subseteq \#^{n \times n \times n}$$
$$X[2] =$$

4. Tensor space decompositions

Goal: write tensor space $\mathbb{F}^{n \times n \times n}$ as a sum of tensor subspaces, as efficiently as possible such that each subspace has the form of an n $\times n$ matrix subspace tensored with \mathbb{F}^n

$$X \subseteq Mat_{nxn} = \mathbb{F}^{n} \otimes \mathbb{F}^{n} \qquad X[i] = \mathbb{F}^{n} \otimes X \subseteq \mathbb{F}^{n \times n \times n}$$
$$X[3] = X \otimes \mathbb{F}^{n} \subseteq \mathbb{F}^{n \times n \times n}$$
$$X[2] =$$

<u>Theorem</u> there are subspaces $X_i \in Mat_{3,3}$ of dim 3 each, such that $\#^{3\times 3\times 3} = X_1 [i] + X_2 [2] + X_3 [3].$ Theorem there are subspaces $X_i \in Mat_{3,3}$ of dim 3 each, such that $\#^{3\times 3\times 3} = X_1 [i] + X_2 [2] + X_3 [3].$

Note: dimensions match.

Theorem there are subspaces $X_i \in Mat_{3,3}$ of dim 3 each, such that $\#^{3\times 3\times 3} = X_1[i] + X_2[2] + X_3[3].$

Note: dimensions match.

Remark Not possible with matrices: there are no subspaces $X_1 \subseteq \mathbb{F}^n$ of dimension $\frac{n}{2}$ each such that $\mathbb{F}^{n\times n} = X_1[1] + X_2[2]$

Theorem there are subspaces $X_i \in Mat_{3,3}$ of dim 3 each, such that $\#^{3\times 3\times 3} = X_1[i] + X_2[2] + X_3[3].$

Note: dimensions match.

Remark Not possible with matrices : there are no subspaces $X_{1} \subseteq \mathbb{F}^{n}$ of dimension $\frac{n}{2}$ each such that $\mathbb{F}^{n\times n} = X_{1}[1] + X_{2}[2]$ Theorem there are subspaces $X_{1} \subseteq (\mathbb{F}^{n})^{\otimes n-1}$ of dim n^{n-2} each, such that $(\mathbb{F}^{n})^{\otimes n} = X_{1}[1] + X_{2}[2] + \cdots + X_{n}[n].$

Again: dimensions match.

5. Application: Subrank is not additive under direct sum

Theorem There are tensors $S, T \in \mathbb{F}^{n \times n \times n}$ such that $\mathcal{Q}(S), \mathcal{Q}(T) \leq \sqrt{3n-2^7}$ while $\mathcal{Q}(S \oplus T) \geq n$. 5. Application: Subrank is not additive under direct sum

Theorem There are tensors $S, T \in \mathbb{F}^{n \times n \times n}$ such that $Q(S), Q(T) \leq \sqrt{3n-2^7}$ while $Q(S \oplus T) \geq n$.

Proof idea

- · Let T be "random."
- Let $S = I_n T$. Then S is "random".
- Then $Q(S), Q(T) \leq \sqrt{3n-2}$ by our theorem.
- On the other hand, $Q(S \oplus T) \neq Q(S + T) = Q(I_n) = n$.

- 6. Asymptotic gap in the subrank

Kronecker product: $S \boxtimes T \in (V_1 \otimes W_1) \otimes (V_2 \otimes W_2) \otimes (V_3 \otimes W_3)$ Subtank is super-multiplicative: $\mathbb{Q}(S \boxtimes T) \ge \mathbb{Q}(S) \mathbb{Q}(T)$

Problem: How does $Q(T^{\boxtimes n})$ grow when n grows?

Problem: How does
$$Q(\top^{\boxtimes n})$$
 grow when n grows?
Theorem Let $\top \in V_1 \otimes V_2 \otimes V_3$ be any tensor.
Exactly one of the following is true:
i) $\top = 0$
ii) $Q(\top^{\boxtimes n}) = 1$
iii) $Q(\top^{\boxtimes n}) = 1.88^{n-o(n)}$
iv) $Q(\top^{\boxtimes n}) \ge 2^n$

Problem: How does
$$Q(\top^{\boxtimes n})$$
 grow when n grows?
Theorem Let $\forall \in V_1 \otimes V_2 \otimes V_3$ be any tensor.
Exactly one of the following is true:
i) $\top = 0$
ii) $Q(\top^{\boxtimes n}) = 1$
iii) $Q(\top^{\boxtimes n}) = 1.88^{n-o(n)}$
iv) $Q(\top^{\boxtimes n}) \ge 2^n$

Proof idea Classification

i) T = 0ii) T has flattening rank one

iii)
$$\top$$
 is equivalent to the W-tensor
iv) \top restricts to 2×2×2 diagonal.

Selected Open Problems

- 1. Our upper bound $Q(T) \leq \lfloor \sqrt{3n-2} \rfloor$ for generie $T \in \mathbb{F}^{n \times n \times n}$ is tight for $n \leq 100$. Is this always true?
- 2. Determine all possible tensor space decompositions

3. What is the largest gap between $Q(S \oplus T)$ and Q(S) + Q(T)?

4. What are the next asymptotic gops?