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Outline

* (Gaussian parameter estimation [Daskalakis et al, 2018]

* Regression & classification [Daskalakis et al, 2019; llyas et al, 2020 (forthcoming)]
 Extensions and Limitations [many works]

* Future work/open problems
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Fig. 1 (Daskalakis et al, 2018): 1000 samples from
A(10,1], 1) and from A4 (]0,1],4 1) truncated to
[—0.5,0.5] x [1.5,2.5]. Which is which?
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* |n the truncated setting, the log-likelihood changes:

I p, )

———fxe Selse 0
J¢ iz p, E) dz

Jopu, 2, 8) =

log(f(x; u, %,S)) = log(fy(x; u, %)) — log (J Nz p, 2) dz)
S

* No longer has a closed-form solution for the maximizer
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. Step 1: Re-parameterize: T = X7}, v = Z_1,‘4

o Step 2: We get an unbiased estimate of the gradient from just truncated samples:

V,ulog(f(xa v, Ta S)) — _ZN/V(M,E)[Z ‘ 7€ S] _
1 1 -
Vleg(f(x; v, 1,5)) = — 5 —z~ N (U,X) [ZZ |z € S]

» Thus: can execute SGD on the truncated log-likelihood with oracle access to

Empirical (batch) Expected truncated mean/
mean/covariance covariance under current params
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Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

o Step 3: SGD recovers the true parameters!

* |ngredients:

» Convexity always holds (hot necessarily strong)

« Guaranteed constant probability a of a sample falling into S

o Efficient projection algorithm into the set of valid parameters (defined by o)
. Strong convexity within the projection set: H > C - a* - /lm(T_l) 3 |

« Good initialization point (i.e., assigns constant mass to )

* Result: Efficient algorithm for recovering parameters from truncated data!
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What we get:

 Goal: infer the effect of height x;
on basketball ability y;

Good
enough
for NBA!

Observe y;

o Strategy: linear regression

i L
o [~}

Player unobserved

height ~

* Truncation: only observe data
based on the value of y;
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Child support paid

Median Mean

All fathers 2,820 3,527
Respondents 3,375 4,066
Nonrespondents 1,899 2,798

Table 1 [Lin et al 1999]
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support (y) because respondence

rate differs based ony



Truncation In practice

Not a hypothetical problem (or a new one!)

True Liae

© Fimaedlne Child support paid
e Median Mean
All fathers 2,820 3,527
Respondents 3,375 4,066
Nonrespondents 1,899 2,798
Fig 1 [Hausman and Wise 1977] Table 1 [Lin et al 1999]
Corrected previous findings about Found bias in income (x) vs child
educgatlt() Has inspired lots of prior work in statistics/econometrics
ytu Our goal: unified efficient (polynomial in dimension) algorithm

[Galton 1897; Pearson 1902; Lee 1914; Fisher 1931; Hotelling 1948; Tukey 1949; Tobin 1958; Amemiya 1973; Breen 1996; Balakrishnan, Cramer 2014]
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Truncated regression and classification

Project z to Add (x,y) to
Sample noise g, a label y training set
Sample a

: compute latent z
covariate x )‘P(Z) # T'U {(x, )’)}
ﬁ
\ =
p-1-(2)

W. [ ]
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Parameter estimation

« We have amodel y; ~ (hg*(xi) + 8) where € ~ Dy, want estimate 0 for O*

o Standard (non-truncated) approach: maximize likelihood

—P |_Ikelilhood of latent under model

Al possible latent variables corresponding to label

p(@;x,y) =

 Example: if s is a linear function, then:
e If 7(z) = zand e ~ A(0,1), MLE is ordinary least squares regression
e If 7(z) =1,.5and e ~ #(0,1), MLE is probit regression
» If 7(z) = 1,5y and &€ ~ Logistic(0,1), MLE is logistic regression

« What about the truncated case?
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 However: this time the loss can actually be non-convex

« Example: 1D logistic regression, $ = [—1, 3] £ (0)

* |Instead, we will use quasi-convexity:

Definition (Quasi-convexity): For all f(y) < f(x), we have ( Vf(x),y —x) <0

[Hazan et al, 2015] define strict local quasi-convexity (SLQC) property: both stronger (inner product

bounded away from zero) and weaker (y is constrained to a ball around x*) than just QC

Their result: normalized SGD with minimum batch size converges to global optimum for SLQC functions
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Analysis
 Goal: show that NSGD on NLL

converges to maximizer of the Sample a

' -| ' t
(population) log-likelihood covariate x Pacs to ||near model
sample normal/logistic

e As with estimation, we define a
projection set where linear,
probit, and logistic regression are H(2) 7(2)

all SLQC = NSGD converges

Theorem (informal): if for every x & IRd, there is a non-zero (@ > () probability that

e |n fact, linear regression was

y = {0,1}, then NSGD finds an e-minimizer of the NLL in poly(1/a,1/e, d) steps.
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Extensions and Limitations

Mixture of two Gaussians [Nagarajan & Panageas, 2019]

* We saw how to estimate parameters of truncated Gaussian
 Nagarajan & Panageas consider truncated mixture of two Gaussians

| 1
— N (U, 2) +—=N(—u, =
> (u, ) > (—u, 2)

* Likelihood can be optimized using the standard expectation-
maximization method, gives local improvement guarantee

* Global convergence of EM for truncated mixtures is shown
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Extensions and Limitations

Unknown truncation set [Kontonis et al, 2019]

» For general truncation sets S, estimating parameters is impossible

* However, [Kontonis et al, 2019] show that learning 3§ is possible if
the space of possible sets has bounded VC dimension, or Gaussian
surface area (measures of complexity):

Concept Class Gaussian Surface Area Sample Complexity
Polynomial threshold functions of degree k O(k) [Kan11] dO(K°)
Intersections of k halfspaces O(+/log k) [KOS08] dO(logk)

General convex sets O(d'/*) [Bal93] JO(Vd)
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Extensions and Limitations
High-dimensional (sparse) setting [Daskalakis et al, 2020]

* For linear regression, we can also consider the setting where the
covariates x; are very high dimensional, but k-sparse

* |n this setting, [Daskalakis et al, 2020] propose a modified LASSO
algorithm for dealing with truncation

» Recovers parameters under truncation with error O(1/klog(d)/n
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Future Work

* Robustness to model mis-specification
e Connections to causal inference:
e Selection bias

* Truncated outcomes (e.g. death in medical trials, dropping out in
school studies, non-response in surveys)

* Improving algorithms for censored statistics (where the learner
observes the truncation)



