Causality & Algorithms Virtual Reading Group

June 19, 2020

Why are we meeting?

• <u>Goal</u>: understand current work in causal inference and figure out interesting questions from a TCS perspective.

 Make concrete connections to property testing? nonasymptotic bounds/sample complexity? robust statistics? approximation algorithms? hardness? Also, (re-)defining things in more CS-friendly language.

Administrivia

Plan is to meet once every two weeks.

 Please volunteer! You don't necessarily have to be an expert on the topic. The goal is to learn and discuss.

• I will post video recordings of the meetings.

Individual Treatment Effect Estimation & Causal Forests

Causality & Algorithms Virtual Reading Group

Arnab Bhattacharyya

June 19, 2020

Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning. Kunzel, Sekhon, Bickel, Yu. PNAS, 116 (10), pg. 4156—4165, 2019.

X-learner

Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning. Kunzel, Sekhon, Bickel, Yu. PNAS, 116 (10), pg. 4156—4165, 2019.

Procedure 1. Double-Sample Trees

Double-sample trees split the available training data into two parts: one half for estimating the desired response inside each leaf, and another half for placing splits.

Input: n training examples of the form (X_i, Y_i) for regression trees or (X_i, Y_i, W_i) for causal trees, where X_i are features, Y_i is the response, and W_i is the treatment assignment. A minimum leaf size k.

- 1. Draw a random subsample of size s from $\{1, \ldots, n\}$ without replacement, and then divide it into two disjoint sets of size $|\mathcal{I}| = |s/2|$ and $|\mathcal{J}| = \lceil s/2 \rceil$.
- 2. Grow a tree via recursive partitioning. The splits are chosen using any data from the \mathcal{J} sample and X- or W-observations from the \mathcal{I} sample, but without using Y-observations from the \mathcal{I} -sample.
- 3. Estimate leafwise responses using only the \mathcal{I} -sample observations.

Double-sample *regression* trees make predictions $\hat{\mu}(x)$ using (4) on the leaf containing x, only using the \mathcal{I} -sample observations. The splitting criteria is the standard for CART regression trees (minimizing mean-squared error of predictions). Splits are restricted so that each leaf of the tree must contain k or more \mathcal{I} -sample observations.

Double-sample *causal* trees are defined similarly, except that for prediction we estimate $\hat{\tau}(x)$ using (5) on the \mathcal{I} sample. Following Athey and Imbens (2016), the splits of the tree are chosen by maximizing the variance of $\hat{\tau}(X_i)$ for $i \in \mathcal{J}$; see Remark 1 for details. In addition, each leaf of the tree must contain k or more \mathcal{I} -sample observations of *each* treatment class.

$$\widehat{ITE}(x) = \frac{1}{|\{i: T_i = 1, X_i \in L(x)\}|} \sum_{\substack{i \in I: T_i = 1, \\ X_i \in L(x)}} Y_i$$

$$-\frac{1}{|\{i: T_i = 0, X_i \in L(x)\}|} \sum_{\substack{i \in I: T_i = 0, \\ X_i \in L(x)}} Y_i$$

Choose split so as to maximize:

$$\sum_{i \in J} \widehat{ITE}(X_i)^2$$

Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. Wager & Athey. Journal of the American Statistical Association, 113:523, pg. 1228—1242, 2018.

Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. Wager & Athey. Journal of the American Statistical Association, 113:523, pg. 1228—1242, 2018.