Proving the completeness of natural deduction

What is to be proved?

To establish completeness, we seek to prove that, if

$$\Phi_1,\Phi_2,\ldots,\Phi_n \models \Psi$$

then $\Phi_1,\Phi_2,\ldots,\Phi_n$ |- Ψ is a valid sequent..

The premise here is that any assignment of truth values to propositional atoms that makes all the formulae $\Phi_1,\Phi_2,...$, Φ_n true also makes the formula Ψ true. The conclusion we wish to draw is that we can use natural deduction to derive Ψ from $\Phi_1,\Phi_2,...,\Phi_n$.

We can reformulate the sequent as stating the universal truth, independent of what truth values are assigned to propositional atoms, of a formula, viz:

$$\models \Phi_1 \rightarrow (\Phi_2 \rightarrow ..., (\Phi_n \rightarrow \Psi) ...))$$

Our objective is then to demonstrate the validity of the sequent:

$$\vdash \Phi_1 \rightarrow (\Phi_2 \rightarrow ..., (\Phi_n \rightarrow \Psi) ...)).$$

In other terminology, we aim to prove that every tautology is a theorem.

Proposition

Let Φ be a formula such that $p_1, p_2, ..., p_n$ are its only propositional atoms. Let r be any row of the truth table of Φ and let $q_1, q_2, ..., q_n$ be defined in such a way that, for i from 1 to n:

 $q_i = p_i$ if the entry for p_i in row r is T;

 $q_i = \neg p_i$ if the entry for p_i in row r is F.

Then

 $q_1, q_2, ..., q_n \vdash \Phi$ is provable if the entry for Φ in row r is T

 $q_1, q_2, ..., q_n \vdash \neg \Phi$ is provable if the entry for Φ in row r is F.

Sketch proof of proposition

The proof proceeds by structural induction on the formula Φ . Informally, the means that we shall assume the proposition is valid for formulae with fewer logical connectives than Φ . By applying the induction hypothesis, we shall be able to assume that we can use natural deduction to derive each of these subformulae or its negation from the premises $q_1, q_2, ..., q_n$. We shall then be able to provide the mini-proofs required to extend these proofs to establish the validity of one or other of the sequents - as appropriate - that is specified in the Proposition.

The decomposition of Φ into structurally simpler subformulae is accomplished by looking at what logical connective appears at the root of the parse tree. There are two possibilities to consider: the connective at the root is \neg , or it is one of the binary connectives \rightarrow , \wedge or \vee .

The connective at the root is \neg :

In this case, we can write Φ as $\neg \Phi_1$.

If Φ evaluates as T on the row r of the truth table, then Φ_1 evaluates as F. Since Φ_1 is a smaller formula than Φ (having one fewer logical connectives), the inductive hypothesis applies to it, and it follows that the sequent:

$$q_1, q_2, ..., q_n \vdash \neg \Phi_1$$

is provable. But this establishes the provability of $q_1, q_2, ..., q_n \vdash \Phi$ since Φ is $\neg \Phi_1$.

If Φ evaluates as F on the row r of the truth table, then Φ_1 evaluates as T. Since Φ_1 is a smaller formula than Φ (having one fewer logical connectives), the inductive hypothesis applies to it, and it follows that the sequent:

$$q_1, q_2, ..., q_n \vdash \Phi_1$$

is provable. By invoking the ¬¬ introduction rule, this gives a proof of the validity of the sequent:

$$q_1, q_2, ..., q_n \vdash \neg \neg \Phi_1$$

This establishes the provability of $q_1, q_2, ..., q_n \vdash \neg \Phi$ since Φ is $\neg \Phi_1$.

The connective at the root is one of the binary connectives

There are three possibilities to consider:

- The connective is \rightarrow
- The connective is \wedge
- The connective is ∨

The nature of the argument will be illustrated with one of these connectives, and the completion of the proof left as an exercise to the reader.

Suppose that Φ is $\Phi_1 \rightarrow \Phi_2$.

If Φ evaluates as F on the row r of the truth table, then $\Phi_1 \rightarrow \Phi_2$ evaluates as F. This necessarily means that Φ_1 evaluates as T and Φ_2 evaluates as F. Since Φ_1 and Φ_2 are smaller formulae than Φ (having one fewer logical connectives), the inductive hypothesis applies to them, and it follows that the sequents:

$$q_1, q_2, ..., q_n \vdash \Phi_1$$

$$q_1, q_2, ..., q_n \vdash \neg \Phi_2$$

is provable. To show that the sequent $q_1, q_2, ..., q_n \vdash \neg \Phi$ is provable, it remains to apply the rules of natural deduction to show that the sequent:

$$\Phi_1$$
, $\neg \Phi_2$ |- $\neg (\Phi_1 \rightarrow \Phi_2)$

is valid. This is easily accomplished by proof-by-contradiction, since the assumption that $\Phi_1 \rightarrow \Phi_2$ combined with the premise Φ_1 generates the conclusion Φ_2 .

If Φ evaluates as T on the row r of the truth table, then $\Phi_1 \rightarrow \Phi_2$ evaluates as T. This can be interpreted as saying that either Φ_1 evaluates as F or Φ_2 evaluates as T. We shall show how the argument proceeds in the case that Φ_1 evaluates as F, and leave the other possibility to the reader.

If Φ_1 evaluates as F, then the sequent:

$$q_1, q_2, ..., q_n \vdash \neg \Phi_1$$

is provable by the inductive hypothesis, and this extends to a proof of the validity of the sequent $q_1, q_2, ..., q_n \vdash \Phi$ subject to using the rules of natural deduction (Ex. to reader) to show the validity of the sequent:

$$\neg \Phi_1 \vdash \Phi_1 \rightarrow \Phi_2$$

The above argument deals with the case when the logical conective at the root is \rightarrow . The same essential principles are used to deal with the other connectives. (Note that the argument in H&R is a little more long-winded, since it distinguishes the four possible ways in which truth values can be assigned to Φ_1 and Φ_2 even though in general this is unnecessary - for instance, the case when Φ_1 evaluates as F in the argument applied to \rightarrow covers either possible truth value being assigned to Φ_2 .)

Having proved the proposition, it is apparent that - in the case of a tautology - every sequent of the form:

$$q_1, q_2, ..., q_n \vdash \Phi$$

is valid no matter what row of the truth table is considered - i.e. no matter what assignment to the propositional atoms $p_1, p_2, ..., p_n$ is made. To complete the completeness proof, it is enough in effect to observe that the disjunction of all the possible truth assignments to the propositional atoms $p_1, p_2, ..., p_n$ is a tautology. By the law of the excluded middle, exactly one of these assignments of truth values pertains in any partcular model, but this is sufficient to establish the validity of the sequent I- Φ since every sequent of the form

$$q_1, q_2, ..., q_n \vdash \Phi$$

is valid. This is a sort of generalisation of the binary version of the \vee elimination rule that perhaps requires a more formal justification. It can be provided by applying the law of the excluded middle n times in order to partition the possible assignments on truth values to p_1 , p_2 , ..., p_n into 2^n singleton classes. This partition is pictorially represented in H&R in the figure on p53.