Exercise sheet 2

CS242 Formal Specification and Verification

Autumn term 2006

- 1.3.1 Given the following formulas, draw their corresponding parse tree:
 - (d) $p \wedge (\neg q \rightarrow \neg p)$
 - (f) $\neg ((\neg q \land (p \to r)) \land (r \to q))$
- 1.3.2 For the formula below, list all its subformulas:
 - (a) $p \to (\neg p \lor (\neg \neg q \to (p \land q)))$
- 1.3.7 Draw a parse tree that represents an ill-formed formula such that
 - (a) one can extend it by adding one or several subtrees to obtain a tree that represents a well-formed formula;
 - (b) it is inherently ill-formed; i.e. any extension of it could not correspond to a well-formed formula.
- 1.4.2 Compute the complete truth table of the formula
 - (c) $p \lor (\neg(q \land (r \to q)))$
- **1.4.12** Show that the following sequent is not valid:
 - (c) $p \to (q \to r) \vdash p \to (r \to q)$

- **1.5.2** Which of these formulas are semantically equivalent to $p \to (q \lor r)$?
 - (b) $q \land \neg r \to p$
 - (d) $\neg q \land \neg r \rightarrow \neg p$
- 1.5.7 Construct a formula in CNF based on the following truth table:

(b)

p	q	r	ϕ_2
T	T	T	T
T	T	F	F
T	F	T	F
F	T	T	Т
T	F	F	F
F	T	F	F
F	F	T	T
F	F	F	F

- 1.5.8 Write a recursive function IMPL_FREE which requires a (parse tree of a) propositional formula as input and produces an equivalent implication-free formula as output. How many clauses does your case statement need? Recall the definition of a well-formed formula.
- **1.5.9** Compute CNF(NNF(IMPL_FREE $\neg(p \rightarrow (\neg(q \land (\neg p \rightarrow q))))))$.
- 1.5.15 Apply algorithm HORN to each of these Horn formulas:

(a)
$$(p \land q \land w \to \bot) \land (t \to \bot) \land (r \to p) \land (\top \to r) \land (\top \to q) \land (u \to s) \land (\top \to u)$$

(g)
$$(\top \to q) \land (\top \to s) \land (w \to \bot) \land (p \land q \land s \to v) \land (v \to s) \land (\top \to r) \land (r \to p)$$