Exercise sheet 3

CS242 Formal Specification and Verification

Autumn term 2006

2.1.1 Use the predicates

A(x,y): x admires y B(x,y): x attended y P(x): x is a professor S(x): x is a student L(x): x is a lecture

and the nullary function symbol (constant)

m: Mary

to translate the following into predicate logic:

- (a) Mary admires every professor.
- (b) Some professor admires Mary.
- (c) Mary admires herself.
- (d) No student attended every lecture.
- (e) No lecture was attended by every student.
- (f) No lecture was attended by any student.
- **2.2.4** Let ϕ be $\exists x (P(y,z) \land (\forall y (\neg Q(y,x) \lor P(y,z))))$, where P and Q are predicate symbols with two arguments.
 - (a) Draw the parse tree of ϕ .
 - (b) Identify all free and bound variable leaves in ϕ .
 - (c) Is there a variable in ϕ which has free and bound occurences?
 - (d) Consider the terms w (w is a variable), f(x) and g(y, z), where f and g are function symbols with arity 1 and 2, respectively.
 - i. Compute $\phi[w/x], \, \phi[w/y], \, \phi[f(x)/y]$ and $\phi[g(y,z)/z].$
 - ii. Which of w, f(x) and g(y, z) are free for x in ϕ ?
 - iii. Which of w, f(x) and g(y, z) are free for y in ϕ ?
 - (e) What is the scope of $\exists x \text{ in } \phi$?
 - (f) Suppose that we change ϕ to $\exists x (P(y,z) \land (\forall x (\neg Q(x,x) \lor P(x,z))))$. What is the scope of $\exists x$ now?

- **2.4.5** Let ϕ be the sentence $\forall x \forall y \exists z (R(x,y) \to R(y,z))$, where R is a predicate symbol of two arguments.
 - (a) Let $A \stackrel{\text{def}}{=} \{a, b, c, d\}$ and $R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(b, c), (b, b), (b, a)\}$. Do we have $\mathcal{M} \models \phi$? Justify your answer, whatever it is.
 - (b) Let $A' \stackrel{\text{def}}{=} \{a, b, c\}$ and $R^{\mathcal{M}'} \stackrel{\text{def}}{=} \{(b, c), (a, b), (c, b)\}$. Do we have $\mathcal{M}' \models \phi$? Justify your answer, whatever it is.
- **2.4.11** For each set of formulas below, show that they are consistent, i.e. that for some model and environment, each formula in the set is true:
 - (b) $\forall x \neg S(x, x), \forall x \exists y S(x, y), \forall x \forall y \forall z ((S(x, y) \land S(y, z)) \rightarrow S(x, z));$
 - (d) S(x,x), $\forall x \forall y (S(x,y) \rightarrow (x=y))$.
- **2.5.1** Show that the following semantic entailments are not valid:
 - (b) $\forall x (P(x) \to R(x)), \forall x (Q(x) \to R(x)) \models \exists x (P(x) \land Q(x))$
 - (d) $\forall x \exists y S(x, y) \models \exists y \forall x S(x, y)$
 - (f) $\exists x (\neg P(x) \land Q(x)) \models \forall x (P(x) \rightarrow Q(x))$