Propositional logic: Normal forms

CS242 Formal Specification and Verification

University of Warwick

Autumn term 2006

Semantic equivalence

$$\phi \equiv \psi$$

if and only if

$$\phi \models \psi$$
 and $\psi \models \phi$

By soundness and completeness, same as provable equivalence, i.e. $\phi \dashv \vdash \psi.$

Exercise 1.5.2.

Adequate set of connectives . . .

... is such that, for every formula, there is an equivalent formula with only connectives from that set.

Example: $\{\neg, \lor\}$.

Exercise 1.5.3.

Validity and satisfiability

Validity: $\models \phi$.

Lemma

$$\phi_1, \phi_2, \ldots, \phi_n \models \psi$$

if and only if

$$\models \phi_1 \rightarrow (\phi_2 \rightarrow (\cdots \rightarrow (\phi_n \rightarrow \psi) \cdots))$$

Satisfiability: there exists an assignment of truth values to ϕ 's propositional atoms such that ϕ is true.

Proposition

 ϕ is satisfiable if and only if $\neg \phi$ is not valid.

Conjunctive normal form

Literal: p or $\neg p$.

CNF:

$$\psi_1 \wedge \psi_2 \wedge \cdots \wedge \psi_n$$

such that, for each i, ψ_i is a disjunction of literals. Some examples:

$$(\neg q \lor p \lor r) \land (\neg p \lor r) \land q$$

$$(p \lor q \lor \neg p) \land (q \lor r) \land (\neg r \lor \neg r)$$

$$p \lor q$$

$$p \land (\neg p \lor r)$$

$$\top$$

$$\bot \land (p \lor q)$$

Validity of CNF

Lemma

A disjunction of literals $L_1 \vee L_2 \vee \cdots \vee L_m$ is valid iff there are i and j such that L_i is $\neg L_j$.

A conjunction $\psi_1 \wedge \psi_2 \wedge \cdots \wedge \psi_n$ is valid iff, for all i, ψ_i is valid.

From truth table to CNF

Suppose we have a truth table of ϕ .

For any row in which ϕ is F, form a disjunction as follows: for any propositional atom p, include p if p is F in that line, or $\neg p$ if p is T in that line.

A conjunction of all those disjunctions is a CNF for ϕ . Example:

$$(p \rightarrow q) \land (q \rightarrow p)$$

From CNF to truth table

Example:

$$(p \vee \neg q) \wedge (q \vee r)$$

Conversion to CNF

Specification of CNF algorithm:

- 1. it takes (a parse tree of) a formula ϕ of propositional logic as input and rewrites it to another formula of propositional logic; such rewrites might call the algorithm CNF recursively;
- each computation, or rewrite step, of CNF results in an equivalent formula;
- 3. CNF terminates for all inputs ϕ which are formulas of propositional logic; and
- 4. the final formula computed by CNF is in CNF.

```
function CNF(\phi):
begin function
  return CNF'(NNF(IMPL\_FREE(\phi)))
end function
function CNF'(\phi):
/* precond.: \phi implication free and in NNF */
/* postcond.: returns an equivalent CNF */
begin function
  case
    \phi is a literal: return \phi
    \phi is \phi_1 \wedge \phi_2: return CNF'(\phi_1) \wedge CNF'(\phi_2)
    \phi is \phi_1 \vee \phi_2: return DISTR(CNF'(\phi_1), CNF'(\phi_2))
  end case
end function
```

```
function DISTR(\eta_1, \eta_2):
/* precond.: \eta_1 and \eta_2 are in CNF */
/* postcond.: returns a CNF for \eta_1 \vee \eta_2 */
begin function
   case
     \eta_1 is \eta_{11} \wedge \eta_{12}:
        return DISTR(\eta_{11}, \eta_2) \wedge \text{DISTR}(\eta_{12}, \eta_2)
     \eta_2 is \eta_{21} \wedge \eta_{22}:
        return DISTR(\eta_1, \eta_{21}) \wedge \text{DISTR}(\eta_1, \eta_{22})
     otherwise (= no conjunctions):
         return \eta_1 \vee \eta_2
   end case
end function
```

```
function NNF(\phi):
/* precond.: \phi is implication free */
/* postcond.: returns a NNF for \phi */
begin function
  case
     \phi is a literal: return \phi
     \phi is \neg\neg\phi_1: return NNF(\phi_1)
     \phi is \phi_1 \wedge \phi_2: return NNF(\phi_1) \wedge NNF(\phi_2)
     \phi is \phi_1 \vee \phi_2: return NNF(\phi_1) \vee NNF(\phi_2)
     \phi is \neg(\phi_1 \land \phi_2): return NNF(\neg\phi_1 \lor \neg\phi_2)
     \phi is \neg(\phi_1 \lor \phi_2): return NNF(\neg \phi_1 \land \neg \phi_2)
  end case
end function
```

Horn formula ...

... is of the form

$$\psi_1 \wedge \psi_2 \wedge \cdots \wedge \psi_n$$

such that each ψ_i is of the form

$$p_1 \wedge p_2 \wedge \cdots \wedge p_{k_i} \rightarrow q_i$$

where $p_1, p_2, \ldots, p_{k_i}, q_i$ are atoms, \bot , or \top . We call each ψ_i a *Horn clause*. Some examples:

$$(p_2 \wedge p_3 \wedge p_5 \rightarrow p_{13}) \wedge (\top \rightarrow p_5) \wedge (p_5 \wedge p_{11} \rightarrow \bot)$$
 $(p \wedge q \wedge s \rightarrow \bot) \wedge (\neg q \wedge r \rightarrow p) \wedge (\top \rightarrow s)$
 $p_2 \wedge p_3 \wedge p_5 \rightarrow p_{13} \wedge p_{27}$

Exercise 1.5.17.

Deciding satisfiability

```
function HORN(\phi):
/* precond.: \phi is a Horn formula */
/* postcond.: decides satisfiability of \phi */
begin function
  mark all atoms p where \top \rightarrow p
    is a subformula of \phi;
  while there is a subformula p_1 \wedge \cdots \wedge p_{k_i} \rightarrow q_i
    of \phi such that all p_i are marked but
    q_i is either \perp or an unmarked atom do
    if q_i is \perp then return 'unsatisfiable'
    else mark q_i for all such subformulas
  end while
  return 'satisfiable'
end function
```

We assume that, whenever $k_i \geq 2$, all of $p_1, p_2, \ldots, p_{k_i}$ are atoms.

Exercise 1.5.15.

Theorem

The algorithm HORN is correct for the satisfiability decision problem of Horn formulas and has no more than n cycles in its while-loop if n is the number of atoms in ϕ . In particular, HORN always terminates on correct input.