Predicate logic: Formal language

CS242 Formal Specification and Verification

University of Warwick

Autumn term 2007

Terms

Constants:

$$c \in \mathcal{C}$$

Functions:

$$f \in \mathcal{F}$$

Each function has some arity $n \ge 0$.

Terms:

$$t ::= x \mid c \mid f(t, \ldots, t)$$

$$C = \{ f \in \mathcal{F} \mid f \text{ has arity } 0 \}.$$

Exercise 2.2.1.(a): d constant, f function with arity 3, g function with arity 2.

iv.
$$g(x, h(y, z), d)$$

v.
$$f(f(g(d,x), f(g(d,x), y, g(y,d)), g(d,d)), g(f(d,d,x), d), z)$$

Formulas

Predicates:

$$P \in \mathcal{P}$$

Each predicate has some arity $n \ge 0$.

$$\phi ::= P(t_1, t_2, \dots, t_n) \mid (\neg \phi) \mid$$
$$(\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \mid$$
$$(\forall x \phi) \mid (\exists x \phi)$$

Binding priorities: $\forall y$ and $\exists y$ bind like \neg .

Example formula:

$$\forall x((P(x) \rightarrow Q(x)) \land S(x,y))$$

Exercise 2.2.3.(a): m constant, f function with one argument, S and B predicates with two arguments.

- ii. B(m, f(m))
- iii. f(m)
- v. S(B(m), z)
- vii. $(S(x,y) \rightarrow S(y,f(f(x))))$

Exercise 2.1.3:

- (c) No animal is both a cat and a dog.
- (d) Every prize was won by a boy.
- (e) A boy won every prize.

Exercise 2.1.5:

- (a) An attacker can persuade a server that a successful login has occurred, even if it hasn't.
- (e) Credentials MUST NOT be forced by the protocol to be present in cleartext at any device other than the end user's.
- (h) Different end user devices MAY be used to download, upload, or manage the same set of credentials.

Free and bound occurrences

An occurrence of x in ϕ is *free* if it is a leaf node in the parse tree of ϕ such that there is no path upwards from that node x to a node $\forall x$ or $\exists x$.

Otherwise, that occurrence of x is called *bound*.

For $\forall x \ \psi$, or $\exists x \ \psi$, we say that ψ — minus any of its subformulas $\exists x \ \chi$, or $\forall x \ \chi$ — is the *scope* of $\forall x$, respectively $\exists x$.

Examples:

$$\forall x((P(x) \to Q(x)) \land S(x,y))$$
$$(\forall x(P(x) \land Q(x))) \to (\neg P(x) \lor Q(y))$$

Substitution

Given a variable x, a term t and a formula ϕ , we define

$$\phi[t/x]$$

to be the formula obtained by replacing each *free* occurrence of variable x in ϕ with t.

Examples:

$$(\forall x ((P(x) \to Q(x)) \land S(x,y)))[f(x,y)/x]$$
$$((\forall x (P(x) \land Q(x))) \to (\neg P(x) \lor Q(y)))[f(x,y)/x]$$

Avoiding variable capture

Given a term t, a variable x and a formula ϕ , we say that t is free for x in ϕ if no free x leaf in ϕ occurs in the scope of $\forall y$ or $\exists y$ for any variable y occurring in t.

Example:

$$(S(x) \land \forall y (P(x) \rightarrow Q(y)))[f(y,y)/x]$$