Predicate logic: Semantics

CS242 Formal Specification and Verification

University of Warwick

Autumn term 2006

Models

Let $\mathcal F$ be a set of function symbols and $\mathcal P$ a set of predicate symbols. A *model* $\mathcal M$ of the pair $(\mathcal F,\mathcal P)$ consists of the following:

- 1. a non-empty set A, the universe of concrete values;
- 2. for each $f \in \mathcal{F}$ with n arguments, a concrete function

$$f^{\mathcal{M}}:A^n\to A$$

3. for each $P \in \mathcal{P}$ with n arguments, a subset

$$P^{\mathcal{M}} \subseteq A^n$$

Environments

An environment is a function

$$I: \mathsf{var} \to A$$

Let I be an environment for a universe of concrete values A, and let $a \in A$. We denote by $I[x \mapsto a]$ the following environment:

$$I[x \mapsto a](y) = \begin{cases} a, & \text{if } y = x \\ I(y), & \text{if } y \neq x \end{cases}$$

Satisfaction

Given a model \mathcal{M} for a pair $(\mathcal{F}, \mathcal{P})$, an environment I for the universe of concrete values A of \mathcal{M} , and a formula ϕ over $(\mathcal{F}, \mathcal{P})$,

$$\mathcal{M} \models_{l} \phi$$

says that ϕ computes to T in the model $\mathcal M$ with respect to I.

For any term t, let

$$t^{\mathcal{M},I}$$

be the value of t obtained by interpreting any function symbol $f \in \mathcal{F}$ by $f^{\mathcal{M}}$, and any variable x by I(x).

We define $\mathcal{M} \models_I \phi$ by structural induction on ϕ :

$$P: \mathcal{M} \models_{I} P(t_1, t_2, \dots, t_n)$$
 iff

$$(t_1^{\mathcal{M},I},t_2^{\mathcal{M},I},\ldots,t_n^{\mathcal{M},I})\in P^{\mathcal{M}}$$

 $\forall x$: $\mathcal{M} \models_I \forall x \ \psi \text{ iff } \mathcal{M} \models_{I[x \mapsto a]} \psi \text{ for all } a \in A.$

 $\exists x$: $\mathcal{M} \models_I \exists x \ \psi \ \text{iff} \ \mathcal{M} \models_{I[x \mapsto a]} \psi \ \text{for some} \ a \in A$.

 \neg : $\mathcal{M} \models_{I} \neg \psi$ iff not $\mathcal{M} \models_{I} \psi$.

 \vee : $\mathcal{M} \models_{l} \psi_{1} \vee \psi_{2}$ iff $\mathcal{M} \models_{l} \psi_{1}$ or $\mathcal{M} \models_{l} \psi_{2}$.

 \wedge : $\mathcal{M} \models_{l} \psi_{1} \wedge \psi_{2}$ iff $\mathcal{M} \models_{l} \psi_{1}$ and $\mathcal{M} \models_{l} \psi_{2}$.

 \rightarrow : $\mathcal{M} \models_{l} \psi_{1} \rightarrow \psi_{2}$ iff $\mathcal{M} \models_{l} \psi_{2}$ whenever $\mathcal{M} \models_{l} \psi_{1}$.

Semantic entailment

$$\phi_1, \phi_2, \ldots, \phi_n \models \psi$$

denotes that, whenever $\mathcal{M} \models_I \phi_i$ for all i, then $\mathcal{M} \models_I \psi$, for all models \mathcal{M} and environments I.

Some examples:

$$\forall x (P(x) \to Q(x)) \models \exists x P(x) \to \exists x Q(x)$$

$$\exists x \ P(x), \forall x (P(x) \rightarrow Q(x)) \models \forall y \ Q(y)$$

Semantics of equality

If $= \in \mathcal{P}$, $=^{\mathcal{M}}$ must be actual equality on the universe of concrete values A:

$$=^{\mathcal{M}} = \{(a,a) \mid a \in A\}$$