UNIVERSITY OF WARWICK

$TRAILER\ FOR\ THE\ CLASS\ TEST\ ON\ MONDAY\ MARCH\ 1^{st}\ \ 2010$

Formal Specification and Verification

Tin	ne allow	ed: 50 mi	inutes				
Ans	swer all	questions	s.				
que que	stion. I	n the un	likely eve	nt that y	ou requi	re additio	pace provided below each onal space to answer any ing clearly that you have
igno	ored by	the mark	,	e end of t			de of all questions will be return the completed test
			ty Registr tudy in th		`	orary card	l number), usercode, and
		_	ion Numb				ercode
		te below t	v				
		I			I		1
	0	1	2	3	4	5	
	5	25	10	25	10	25	

Total	
-------	--

CS242

Some of the questions in this paper will refer to properties of your university registration number - the seven-digit code you specified on the previous page. For the purpose of specifying these properties, the following definitions will apply:

D is the set of digits $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

I is the subset $\{1, 2, 3, 4, 5, 6, 7\}$ of digits in D

E is the subset of even digits in D

O is the subset of odd digits in D

X is the subset of digits in D that appear in your seven-digit university code

M is the set of all positive integers whose decimal representations contain only digits in X

 $d: I \to X$ is a function mapping i to the i-th digit in your university code

s is the sum of all seven digits in your university code

Note that, following a standard convention, a set S can be interpreted as a predicate such that S(x) is true if and only if $x \in S$.

By way of illustration, my registration number is 7570320, so that in my case $X = \{7, 5, 0, 3, 2\}$, the sum s=24, and d(1)=7, d(2)=5, d(3)=7 etc. The set M contains (e.g) 20, 533 and 5573207 but not 0 and 628. Hence M(533) is true whilst M(628) is false.

0. Write down the values of X , $d(4)$, s , $M(533)$ and $M(628)$ in your case. [5 marks]	

Page 2 Continued

1. The properties of your usercode as specified on the previous page supply a model \mathcal{M} and an environment for the interpretation of predicate logic formulae. My usercode supplies a different model \mathcal{M}_0 .

Draw an expression tree for the predicate logic formula ϕ below, and determine whether or not it is satisfied (a) in the model \mathcal{M} and (b) in the model \mathcal{M}_0 , justifying your answers:

$$\phi \equiv (X(5) \to O(d(3))) \lor (((\forall s)(I(s) \to s \le 8)) \land M(2*s))$$

[25 marks]

Page 3 Continued

CS242

 $Several\ other\ questions\ at\ this\ point\ \dots$

- 2. Testing your familiarity with some basic logical concepts
- 3. An exercise in interpreting predicate logic assertions based on the model $\mathcal M$
- 4. Testing your basic understanding of key definitions

Page 4 Continued

5. Write down the natural deduction rules for introducing and eliminating \wedge and \rightarrow . Use them to prove that $p \rightarrow q \vdash p \land r \rightarrow q \land r$. [25 marks]

Page 5 End