16:30 - 17:00
High-Performance GMRES Multi-Precision Benchmark: Design, Performance, and Challenges

Ichitaro Yamazaki, Sivasankaran Rajamanickam, Jennifer Loe, Christian Glusa
Sandia National Laboratories, NM

Piotr Luszczek, Jack Dongarra
University of Tennessee, TN

We propose a new benchmark for high-performance (HP) computers. Similar to High Performance Conjugate Gradient (HPCG), the new benchmark is designed to rank computers based on how fast they can solve a sparse linear system of equations, exhibiting computational and communication requirements typical in many scientific applications. The main novelty of the new benchmark is that it is now based on Generalized Minimum Residual method (GMRES) (combined with Geometric Multi-Grid preconditioner and Gauss-Seidel smoother) and provides the flexibility to utilize lower precision arithmetic. This is motivated by new hardware architectures that deliver lower-precision arithmetic at higher performance. There are other machines that do not follow this trend. However, using a lower-precision arithmetic reduces the required amount of data transfer, which alone could improve solver performance. Considering these trends, an HP benchmark that allows the use of different precisions for solving important scientific problems will be valuable for many different disciplines, and we also hope to promote the design of future HP computers that can utilize mixed-precision arithmetic for achieving high application perfor- mance. We present our initial design of the new benchmark, its reference implementation, and the performance of the reference mixed (double and single) precision Geometric Multi-Grid solvers on current top-ranked architectures. We also discuss challenges of designing such a benchmark, along with our preliminary numerical results using 16-bit numerical values (half and bfloat precisions) for solving a sparse linear system of equations.